Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0
`A=sqrt{(5-sqrt3)^2}+sqrt{(2-sqrt3)^2}`
`=5-sqrt3+2-sqrt3`
`=7-2sqrt3`
`B=sqrt{(3-sqrt2)^2}-sqrt{(1-sqrt2)^2}`
`=3-sqrt2-(sqrt2-1)`
`=4-2sqrt2`
`C=sqrt{(3+sqrt7)^2}-sqrt{(2-sqrt7)^2}`
`=3+sqrt7-(sqrt7-2)`
`=5`
`D=sqrt{4-2sqrt3}+sqrt{7+4sqrt3}`
`=sqrt{3-2sqrt3+1}+sqrt{4+2.2.sqrt3+3}`
`=sqrt{(sqrt3-1)^2}+sqrt{(2+sqrt3)^2}`
`=sqrt3-1+2+sqrt3=1+2sqrt3`
\(A=\left|5-\sqrt{3}\right|+\left|2-\sqrt{3}\right|=5-\sqrt{3}+2-\sqrt{3}=7-2\sqrt{3}\)
\(B=\left|3-\sqrt{2}\right|-\left|1-\sqrt{2}\right|=3-\sqrt{2}-\sqrt{2}+1=4-2\sqrt{2}\)
\(C=\left|3+\sqrt{7}\right|-\left|2-\sqrt{7}\right|=3+\sqrt{7}-\sqrt{7}+2=5\)
\(D=\sqrt{3-2\sqrt{3}+1}+\sqrt{4+2.2\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}=\left|\sqrt{3}-1\right|+\left|2+\sqrt{3}\right|\)
\(=\sqrt{3}-1+2+\sqrt{3}=1+2\sqrt{3}\)
a) Để tính giá trị của biểu thức P=(x^3+12x−9)^{2005}=(√3+12√−9)^{2005} với x=3√4(√5+1)−3√4(√5−1). Đầu tiên, ta thay x bằng giá trị đã cho vào biểu thức P: P=(3√4(√5+1)−3√4(√5−1))^3+12(3√4(√5+1)−3√4(√5−1))−9)^{2005} Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: P=(4(5+1)^{1/2}−4(5−1)^{1/2})^3+12(4(5+1)^{1/2}−4(5−1)^{1/2})−9)^{2005} =(4√6−4√4)^3+12(4√6−4√4)−9)^{2005} =(4√6−8)^3+12(4√6−8)−9)^{2005} =(64√6−192+96√6−96−9)^{2005} =(160√6−297)^{2005} ≈ 1.332 × 10^3975
b) Để tính giá trị của biểu thức Q=x^3+ax+b=√3+√a+√b^2+√a^3+√3+√a−√b^2+√a^3 với x=3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27). Tương tự như trên, ta thay x bằng giá trị đã cho vào biểu thức Q: Q=(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))^3+a(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))+b Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: Q=(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))^3+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b ≈ −b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b
`A=sqrt{(2-sqrt5)^2}+sqrt{(2sqrt2-sqrt5)^2}`
`A=|2-sqrt5|+|2sqrt2-sqrt5|`
`A=\sqrt5-2+2sqrt2-sqrt5`
`A=2sqrt2-2`
`b)B=sqrt{(sqrt7-2sqrt2)^2}+sqrt{(3-2sqrt2)^2}`
`B=|sqrt7-2sqrt2|+|3-2sqrt2|`
`A=2sqrt2-sqrt7+3-2sqrt2`
`A=3-sqrt7`
a,=> A=\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-2\sqrt{2}\right)^2}=2-\sqrt{5}+\sqrt{5}-2\sqrt{2}=2-2\sqrt{2}\)
b tương tự
\(a,=\sqrt{17}-5\sqrt{2}+3\\ b,=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\\ =\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\left(\sqrt{5}-1\right)\\ =\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)=8\\ c,=\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)=2-9=-7\\ d,4+\sqrt{7}-\sqrt{2}\)