K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

Ta có :

\(A=\dfrac{\left(\sqrt{2000}-\sqrt{1999}\right)\left(\sqrt{2000}+\sqrt{1999}\right)}{\left(\sqrt{2000}+\sqrt{1999}\right)}=\dfrac{1}{\sqrt{2000}+\sqrt{1999}}\)

\(B=\dfrac{\left(\sqrt{2001}-\sqrt{2000}\right)\left(\sqrt{2001}+\sqrt{2000}\right)}{\left(\sqrt{2001}+\sqrt{2000}\right)}=\dfrac{1}{\sqrt{2001}+\sqrt{2000}}\)

Do \(\sqrt{2000}+\sqrt{1999}< \sqrt{2001}+\sqrt{2000}\)

\(\Rightarrow A>B.\)

26 tháng 7 2018

Bài làm:

Theo máy tính Vinacal 570ES PLUS II, ta có:

A>B

Đọc tiếp...

29 tháng 10 2016

ta có \(\sqrt{2000}-\sqrt{1999}=\frac{1}{\sqrt{2000}+\sqrt{1999}}\)

\(\sqrt{2001}-\sqrt{2000}=\frac{1}{\sqrt{2001}+\sqrt{2000}}\)

\(\frac{1}{\sqrt{2000}+\sqrt{1999}}>\frac{1}{\sqrt{2001}+\sqrt{2000}}\)\(\sqrt{2000}-\sqrt{1999}>\sqrt{2001}-\sqrt{2000}\)

\(A=\sqrt{2007}-\sqrt{2006}=\frac{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}{\left(\sqrt{2007}+\sqrt{2006}\right)}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)(1)

\(B=\sqrt{2008}-\sqrt{2007}=\frac{\left(\sqrt{2008}-\sqrt{2007}\right)\left(\sqrt{2008}+\sqrt{2007}\right)}{\left(\sqrt{2008}+\sqrt{2007}\right)}=\frac{1}{\sqrt{2008}+\sqrt{2007}}\)(2)

Từ 1  và 2 => \(\frac{1}{\sqrt{2007}+\sqrt{2006}}>\frac{1}{\sqrt{2008}+\sqrt{2007}}\)

hay \(\sqrt{2007}-\sqrt{2006}>\sqrt{2008}-\sqrt{2007}\)

P/s tham khảo nha

24 tháng 6 2021

Bài này cũng không dài mìn nghĩ bạn nên làm tất cho đầy đủ chứ làm 1 phần như nayd quá ngắn

12 tháng 6 2016

Ta sẽ chứng minh bất đẳng thức sau : \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\)

\(\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^2< \frac{a+b}{2}\Leftrightarrow\frac{a+b+2\sqrt{ab}}{4}< \frac{a+b}{2}\Leftrightarrow a+b+2\sqrt{ab}< 2\left(a+b\right)\Leftrightarrow-\left(a-2\sqrt{ab}+b\right)< 0\Leftrightarrow-\left(\sqrt{a}-\sqrt{b}\right)^2< 0\)(luôn đúng)

Vậy bất đẳng thức được chứng minh.

Áp dụng : \(\frac{\sqrt{1998}+\sqrt{2000}}{2}< \sqrt{\frac{1998+2000}{2}}=\sqrt{1999}\)

\(\Rightarrow\sqrt{1998}+\sqrt{2000}< 2.\sqrt{1999}\)

12 tháng 6 2016

Phần chứng minh bất đẳng thức bạn ghi thêm điều kiện a,b > 0 nhé

1 tháng 10 2016

Giả sử A > B

<=> 19 >\(5\sqrt{3}+6\sqrt{2}\)

<=> (6 + 3 - \(2\sqrt{3}\sqrt{6}\)

) + (10 - 5\(\sqrt{3}\))>0

<=> (\(\sqrt{6}-\sqrt{3}\))2 + (10 - \(5\sqrt{3}\))>0

Mà 10 - 5\(\sqrt{3}\)> 10 - 5\(\sqrt{4}\) = 0

Vậy A > B

1 tháng 11 2017

a,hay \(\left(1995\cdot1997\right)^n\)và \(\left(1996\cdot1996\right)^n\)

hay so sánh \(1995\cdot1997\)và \(1996\cdot1996\)

ta có 1995*1997=1995*(1996+1)=1995*1996+1995

         1996*1996=1996*(1995+1)=1996*1995+1996

vì 1995<1996 => \(\left(1995\cdot1997\right)^n\)<\(\left(1996\cdot1996\right)^n\)

1 tháng 11 2017

câu b, bình phương 2 vế, xong làm tương tự

5 tháng 9 2020

a) Ta có: \(\frac{1}{5}\sqrt{150}=\frac{1}{5}\cdot5\sqrt{6}=\sqrt{6}=\frac{1}{3}\cdot\sqrt{6\cdot9}=\frac{1}{3}\sqrt{54}>\frac{1}{3}\sqrt{51}\)

b) Ta có: \(\frac{1}{2}\sqrt{6}=\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}=6\sqrt{\frac{1}{2}}\)

5 tháng 9 2020

a) Vì  \(5,\left(6\right)< 6\)\(\Rightarrow\)\(\frac{51}{9}< \frac{150}{25}\)

                                    \(\Rightarrow\)\(\sqrt{\frac{51}{9}}< \sqrt{\frac{150}{25}}\)

                                    \(\Rightarrow\)\(\frac{1}{3}\sqrt{51}< \frac{1}{5}\sqrt{150}\)

b) Vì  \(1,5< 18\)\(\Rightarrow\)\(\frac{6}{4}< \frac{36}{2}\)

                                 \(\Rightarrow\)\(\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}\)

                                 \(\Rightarrow\)\(\frac{1}{2}\sqrt{6}< 6\sqrt{\frac{1}{2}}\)