\(\sqrt{1+\frac{1}{xy}}\) biết x và y đều là số hữu tỷ và \(^{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Ta có : \(x^3+y^3=2x^2y^2\Rightarrow\left(x^3+y^3\right)^2=4x^4y^4\)

            \(x^6+y^6+2x^3y^3=4x^4y^4\Rightarrow x^6+y^6-2x^3y^3=4x^4y^4-4x^3y^3\)

            \(\left(x^3-y^3\right)^2=4x^3y^3\left(xy-1\right)\Rightarrow xy-1=\frac{\left(x^3-y^3\right)^2}{4x^3y^3}\)

            \(\frac{xy-1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\) (chia cả 2 vế cho xy)\(\Rightarrow1-\frac{1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\)

              \(\Rightarrow\sqrt{1-\frac{1}{xy}}=\frac{x^3-y^3}{2x^2y^2}\)

15 tháng 10 2017

nhớ k mình nha

30 tháng 7 2020

Vì \(x\ne0,y\ne0\) nên điều kiện đã cho tương đương với \(\frac{x}{y^2}+\frac{y}{x^2}=2\Rightarrow\frac{x^2}{y^4}+\frac{y^2}{x^4}+\frac{2}{xy}=4\Leftrightarrow4\left(1-\frac{1}{xy}\right)=\frac{x^2}{y^4}+\frac{y^2}{x^4}-\frac{2}{xy}=\left(\frac{x}{y^2}-\frac{y}{x^2}\right)^2\)

\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\frac{1}{2}\left|\frac{x}{y^2}-\frac{y}{x^2}\right|\)

17 tháng 6 2018

1/x+1/y+1/z =0 nhé

\(\sqrt{x^2+y^2+z^2}=\sqrt{\left(x+y+z\right)^2-2\left(xy+yz+xz\right)}=\sqrt{\left(x+y+z\right)^2-2xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}=\sqrt{\left(x+y+z\right)^2}=\left|x+y+z\right|\)

4 tháng 8 2018

a/ \(x+y=a_1+b_1\sqrt{2}+a_2+b_2\sqrt{2}=\left(a_1+a_2\right)+\left(b_1+b_2\right)\sqrt{2}\)

\(xy=\left(a_1+b_1\sqrt{2}\right)\left(a_2+b_2\sqrt{2}\right)=\left(a_1a_2+2b_1b_2\right)+\left(a_1b_2+a_2b_1\right)\sqrt{2}\)

b/ Tương tự câu a.

20 tháng 11 2019

Đẳng thức đã cho tương đương với 

\(x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy.\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(xy+1\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}+\left(\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow x+y-\frac{xy+1}{x+y}=0\)

\(\Leftrightarrow\left(x+y\right)^2=xy+1\)

\(\Leftrightarrow\sqrt{1+xy}=|x+y|\)

Vì x,y là số hữu tỉ nên Vế phải của đẳng thức là số hữu tỉ => Điều phải chứng minh

24 tháng 10 2019

\(x^{2019}+y^{2019}=2x^{1009}.y^{1009}< =>x^{2020}+x.y^{2019}=2x^{1010}y^{1009}< =\)\(>\left(x^{1010}-y^{1009}\right)^2=y^{2018}\left(1-xy\right)=>\sqrt{1-xy}=\frac{x^{1010}-y^{1009}}{y^{1009}}\)

x;y là số hữu tỉ nên có dạng \(x=\frac{m}{n};y=\frac{p}{q}\left(m;n;p;q\in Z\right)\)=> \(\sqrt{1-xy}=\frac{m^{1010}.q^{1009}-n^{1010}.p^{1009}}{n^{1010}.p^{1009}}=\frac{A}{B}\left(A;B\in Z\right)\)=> \(\sqrt{1-xy}\in Q\)

28 tháng 9 2016

xét 1-1/xy:
=(xy-1)/xy
nhân 4x^3y^3 vào bt:
(4x^4y^4-4x^3y^3)/4x^4y^4
thay 4x^4y^4=(x^3+y^3)^2:
=[(x^3+y^3)^2-4x^3y^3]/(x^3+y^3)^2
=(x^6+y^6-2x^3y^3)/(x^3+y^3)^2
=(x^3-y^3)^2/(x^3+y^3)^2
=>căn(1-1/xy)=lx^3-y^3l / lx^3+y^3l là số hữu tỉ


 

28 tháng 9 2016

Cô phải đọc rất kĩ mới hiểu bài của Minh. Lần sau em chú ý dùng công thức có trong phần \(f\left(x\right)\)để bài làm được trực quan hơn.
Cảm ơn em đã trình bày bài giải !