K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

a)ta có :x+y=a1\(\sqrt{2}\)+b1+a2\(\sqrt{2}\)+b2=(a1+a2)\(\sqrt{2}\)+b1+b2

mặt khác, ta lại có a1,a2,b1,b2 là những số hữu tỉ nên (a1+a2);(b1+b2) cũng là những số hữu tỉ

=>biểu thức x+y cũng được viết dưới dạng a\(\sqrt{2}\)+b với a,b là số hữu tỉ.

ta xét tích x.y=(a1\(\sqrt{2}\)+b1)(a2\(\sqrt{2}\)+b2)=2a1.a2+a1.b2\(\sqrt{2}\)+b1.a2.\(\sqrt{2}\)+b1.b2=(a1b2+b1a2)\(\sqrt{2}\)+(2a1a2+b1b2)

a1,a2,b1,b2 là những số hữu tỉ nên các tích a1a2;b1b2;a1b2;a2b1 là những số hữu tỉ nên x.y cững có dạng a\(\sqrt{2}\)+b với a,b là số hữu tỉ

b) xét thương \(\dfrac{x}{y}\)=\(\dfrac{a_1\sqrt{2}+b_1}{a_2\sqrt{2}+b_2}=\dfrac{\left(a_1\sqrt{2}+b_1\right)\left(a_2\sqrt{2}-b_2\right)}{\left(a_2\sqrt{2}+b_2\right)\left(a_2\sqrt{2}-b_2\right)}\)

=\(\dfrac{2a_1a_2-a_1b_2\sqrt{2}+a_2b_1\sqrt{2}-b_1b_2}{2a_2^2-b_2^2}\)=\(\dfrac{\left(a_2b_1-a_1b_2\right)\sqrt{2}}{2a_2^2-b_2^2}+\dfrac{2a_1a_2-b_1b_2}{2a_2^2-b_2^2}\)

a1,b1,a2,b2 là những số hữu tỉ nên a1b2;a1a2;b1b2;a2b1 cũng là những số hữu tỉ hay \(\dfrac{a_2b_1-a_1b_2}{2a_2^2-b_2^2};\dfrac{2a_1a_2-b_1b_2}{2a_2^2-b_2^2}\)cũng là những số hữu tỉ nên \(\dfrac{x}{y}\) cũng có dạng a\(\sqrt{2}\)+b với a và b là những số hữu tỉ

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

21 tháng 1 2019

7 tháng 5 2019

Ta có: x + y = ( a 1 2 +  b 1 ) + ( a 2 2  +  b 2 ) = ( a 1 +  a 2 ) 2  + ( b 1  +  b 2 )

Vì  a 1 ,  a 2 ,  b 1 ,  b 2  là các số hữu tỉ nên  a 1  +  a 2 ,  b 1  +  b 2  cũng là số hữu tỉ.

Lại có: xy = ( a 1 2  +  b 1 )( a 2 2  +  b 2 ) = 2 a 1 a 2  +  a 1 b 2 2  +  a 2 b 1 2  +  b 1 b 2

= ( a 1 b 2  +  a 2 b 1 ) 2  + (2 a 1 a 2  +  b 1 b 2 )

Vì a 1 ,  a 2 ,  b 1 ,  b 2 là các số hữu tỉ nên   a 1 b 2  +  a 2 b 1 ,  a 1 a 2  +  b 1 b 2  cũng là các số hữu tỉ.

28 tháng 5 2020

Theo vi ét: 

\(\hept{\begin{cases}a_1a_2=1\\a_1+a_2=-p\end{cases}}\) và \(\hept{\begin{cases}b_1b_2=1\\b_1+b_2=-q\end{cases}}\)

Ta có: \(\left(a_1-b_1\right)\left(a_2-b_1\right)\left(a_1+b_2\right)\left(a_2+b_2\right)\)

\(=\left(a_1a_2+b_1^2-a_1b_1-a_2b_1\right)\left(a_1a_2+a_2b_2+b_2^2+a_1b_2\right)\)

\(=\left(1+b_1^2+pb_1\right)\left(1+b_2^2-pb_2\right)\)

\(=1+b_2^2-pb_2+b_1^2+b_1^2b_2^2-pb_1^2b_2+pb_1+pb_1b_2^2-p^2b_1b_2\)

\(1+b_1^2+b_2^2-pb_2-pb_1+1+pb_1+pb_2-p^2\)

\(=2+\left(b_1+b_2\right)^2-2b_1b_2-p^2\)

\(=q^2-p^2\)

Đặt $ X = a - b; Y = b - c; Z = c - a \Rightarrow X + Y + Z = 0$Với X + Y + Z = 0, ta chứng minh được :$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$Thật vậy, ta có :$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + \dfrac{2}{XY} + \dfrac{2}{YZ} + \dfrac{2}{ZX}$$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + 2.\dfrac{X + Y + Z}{XYZ}$$ = \dfrac{1}{X^2} +...
Đọc tiếp

Đặt $ X = a - b; Y = b - c; Z = c - a \Rightarrow X + Y + Z = 0$

Với X + Y + Z = 0, ta chứng minh được :
$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$

Thật vậy, ta có :

$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + \dfrac{2}{XY} + \dfrac{2}{YZ} + \dfrac{2}{ZX}$

$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + 2.\dfrac{X + Y + Z}{XYZ}$

$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$ ( do X + Y + Z = 0)

$ \Rightarrow \sqrt{\dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}} = \sqrt{( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2} = |\dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z}|$

Suy ra : $ \sqrt{\dfrac{1}{(a - b)^2} + \dfrac{1}{(b - c)^2} +\dfrac{1}{( c - a)^2}} = |\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$

Do a, b, c là số hữu tỷ nên $|\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$ cũng là số hữu tỷ. Ta có điều phải chứng minh.

1
10 tháng 9 2017

ngu như con lợn

20 tháng 12 2018

Đặt \(f\left(x\right)=\left(a_1x-b_1\right)^2+...+\left(a_nx-b_n\right)^2\)

\(\Rightarrow f\left(x\right)\ge0\) với mọi x

Mặt khác : \(f\left(x\right)=\left(a_1^2+...+a_n^2\right)x^2-2\left(a_1b_1+...+a_nb_n\right)x+\left(b_1^2+...+b_n^2\right)\)

\(\Rightarrow\Delta'\le0\)

\(\Rightarrow\left(a_1b_1+...+a_nb_n\right)^2\le\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_n^2\right)\)

\(\Rightarrow\left|a_1b_1+...+a_nb_n\right|\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_{1^{ }}^2+...+b_n^2\right)}\)

20 tháng 12 2018

Áp dụng bđt bunhia copski, ta có \(\left(a_1b_1+...+a_nb_n\right)^2\le\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)\Leftrightarrow\sqrt{\left(a_1b_1+...+a_nb_n\right)^2}\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)}\Leftrightarrow\left|a_1b_1+...+a_nb_n\right|\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)}\)

Dấu bằng xảy ra khi \(\dfrac{a_1}{b_1}=...=\dfrac{a_n}{b_n}\)

Vậy \(\left|a_1b_1+...+a_nb_n\right|\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)}\)