Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = a2018+a2017+1
Do a là số nguyên dương nên ta xét các TH
Nếu a=1 thì A=a2018+a2017+1=3(là SNT) chọn
Nếu a>1 ta có
\(A=\left(a^{2018}-a^2\right)+\left(a^{2017}-a\right)+\left(a^2+a+1\right)\)
\(A=\left(a^{2016}-1\right)\left(a^2+a\right)+\left(a^2+a+1\right)\)(1)
Ta thấy: \(a^{2016}-1=\left(a^3\right)^{672}-1\)luôn chia hết cho a3-1( áp dụng tính chất an-bn chia hết cho a-b với a khác b)
Mà a>1 => a3-1 #0 và a3-1=(a-1)(a2+a+1)
Vì vậy a2016-1 chia hết cho a2+a+1(2)
Từ (1) và (2) => A chia hết cho (a2+a+1)
Mà a>1 => \(\hept{\begin{cases}A>a^2+a+1\\a^2+a+1#1\end{cases}}\)
=> A là hợp số
Vậy a=1 thì A là số nguyên tố
Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.
tìm số tự nhiên n và k sao cho A là số nguyên tố biết A= n4 + 42k+1
Ta dựa vào nhận xét sau đây: Nếu \(p\) là số nguyên tố và \(p=ab\) với a,b là các số nguyên dương thì a=1 hoặc b=1. Ta có
\(A=n^4+4\cdot2^{4k}=\left(n^2\right)^2+2\cdot n^2\cdot2^{2k+1}+\left(2^{2k+1}\right)^2-2^{2k+2}\cdot n^2\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2^{k+1}\cdot n\right)^2=\left(n^2+2^{2k+1}-2^{k+1}\cdot n\right)\left(n^2+2^{2k+1}+2^{k+1}n\right).\)
Vì A là số nguyên tố và \(n^2+2^{2k+1}-2^{k+1}\cdot n<\)\(n^2+2^{2k+1}+2^{k+1}\cdot n\). Suy ra \(n^2+2^{2k+1}-2^{k+1}\cdot n=1\). Suy ra \(\left(n-2^k\right)^2+2^{2k}=1\to n=2^k,2^{2k}=1\to k=0,n=1.\) Khi đó A=1+4=5 là số nguyên tố.
Với n=0 thì \(A=1\) không là số nguyên tố
Với n=1 thì \(A=3\) là số nguyên tố
Với \(n\ge2\) ta có:
\(A=n^{2018}+n^{2017}+1\)
\(=\left(n^{2018}-n^2\right)+\left(n^{2017}-n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2016}-1\right)+n\left(n^{2016}-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^{672}-1\right]+n\left[\left(n^3\right)^{672}-1\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\cdot A+n\left(n^3-1\right)\cdot B+n^2+n+1\)
\(=\left(n^2+n+1\right)\cdot A'+\left(n^2+n+1\right)\cdot B'+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A'+B'+1\right)\) là hợp số với \(\forall n\ge2\)