K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

Ta có :

\(A=\frac{10}{a^m}+\frac{10}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^n}\)

\(B=\frac{11}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^m}\)

Cả 2 vế đều có   \(\frac{10}{a^m}+\frac{9}{a^n}\)nên ta so sánh \(\frac{1}{a^n}và\frac{1}{a^m}\)

TH1:
Nếu m>n => a^m>a^n => 1/a^m<1/a^n => B<A
TH2:
Nếu m<n =>a^m<a^n => 1/a^m>1/a^n => B>A
TH3:
Nếu m=n => a^m=a^n => 1.a^m=1/a^n => A=B

9 tháng 6 2015

ta có A=\(\frac{10}{a^m}+\frac{10}{a^n}\)=\(\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^n}\)

B=\(\frac{11}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{1}{a^m}+\frac{9}{a^n}\)

do \(\frac{10}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}\)nên để so sánh A và B ta đi so sánh \(\frac{1}{a^n}\)và \(\frac{1}{a^n}\)

xét 2 trường hợp

th1) m=n => \(\frac{1}{a^m}=\frac{1}{a^n}\)=>A=B

th2) m>n=>\(\frac{1}{a^m}\frac{1}{a^n}\)=>A<B

21 tháng 5 2015

\(A=\frac{10}{a^m}+\frac{10}{a^n}\)

\(B=\frac{11}{a^m}+\frac{11}{a^n}=\left(\frac{10}{a^m}+\frac{10}{a^n}\right)+\left(\frac{1}{a^m}+\frac{1}{a^n}\right)\)

Vậy A < B

chọn đúng nhé !

 

2 tháng 11 2015

Bạn vào câu hỏi tương tự nha !

29 tháng 4 2015

Dễ mà, bài này trên lớp cậu đã hỏi mình đâu ?

                                                                  Giải

A = \(\left(\frac{10}{a^m}+\frac{9}{a^n}\right)+\frac{1}{a^n}\)                         ;             B = \(\left(\frac{10}{a^m}+\frac{9}{a^n}\right)+\frac{1}{a^m}\)

Muốn so sánh A với B chỉ cần so sánh \(\frac{1}{a^m}\) và \(\frac{1}{a^n}\)

Xét các trường hợp:

TH1: a = 1 thì am=an do đó A=B

TH2: a \(\ne\) 1 thì xét m và n

- Nếu m = n thì a= an do đó A=B

- Nếu m < n thì am < an do đó \(\frac{1}{a^m}\) > \(\frac{1}{a^n}\) ; vậy A<B

- Nếu m > n thì am > an do đó \(\frac{1}{a^m}\) < \(\frac{1}{a^n}\) ; vậy A>B

29 tháng 4 2015

vì đã chọn đúng cho việt quá 3 lần trong hai ngày !!!