K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 9 2018

Lời giải:

a) Để \(A\cup B\) là một khoảng thì \(\left\{\begin{matrix} m\leq 3\\ m+1> 3\end{matrix}\right.\) hoặc \(\left\{\begin{matrix} m< 5\\ m+1\geq 5\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} m\in (2;3]\\ m\in [4;5)\end{matrix}\right.\)

Với \(m\in (2;3]\Rightarrow A\cup B=(m,5)\)

Với \(m\in [4;5)\Rightarrow A\cup B=(3,m+1)\)

c)

\(A\cap B=\oslash\) khi \(m+1\leq 3\) hoặc \(m\geq 5\)

Tức \(m\in (-\infty;2]\cup [5;+\infty)\)

b) b ngược lại với $c$

Để \(A\cap B\neq \oslash\Rightarrow m\in (2;5)\)

AH
Akai Haruma
Giáo viên
28 tháng 9 2018

Bạn xem lại khoảng của A

28 tháng 10 2023

Để A là con của của B thì \(\left\{{}\begin{matrix}m-3>=-3\\m+4< =5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=0\\m< =1\end{matrix}\right.\)

=>0<=m<=1

5 tháng 9 2021

b)

=>\(\left\{{}\begin{matrix}m-1>2\\m+3\le5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>3\\m\le2\end{matrix}\right.\)(vô lý)

vậy ko tồn tại m

5 tháng 9 2021

a)\(\left\{{}\begin{matrix}2>m-1\\5< m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\Leftrightarrow2< m< 3\)

23 tháng 9 2023

\(\left\{{}\begin{matrix}A=\left(2;+\infty\right)\\B=\left(m^2-7;+\infty\right)\end{matrix}\right.\) \(\left(m>0\right)\)

Để \(A\)\\(B\) là 1 khoảng có độ dài bằng 6

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-7>2\\m^2-7-2=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2>9\\m^2=25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>3\cup m< -3\\m=5\cup m=-5\end{matrix}\right.\)

\(\Leftrightarrow m=5\cup m=-5\) thỏa mãn điều kiện đề bài