Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)
b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Tới đây lập bảng tìm n.
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
Để A là phân số thì 3n + 7 ko chia hết cho n + 1
<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}
=> n khác {-2;-3;-5;0;1;3}
Để A là số nguyên thì 3n + 7 chia hết cho n + 1
=> 3n + 3 + 4 chia hết cho n + 1
=> 3.(n + 1) + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> n = {-5;-3;-2;0;1;3}
\(a)\) Ta có :
\(A=\frac{3n+6}{n+1}=\frac{3n+3+3}{n+1}=\frac{3n+3}{n+1}+\frac{3}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{3}{n+1}=3+\frac{3}{n+1}\)
Để A nguyên thì \(\frac{3}{n+1}\) phải nguyên \(\Rightarrow\)\(3⋮\left(n+1\right)\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Suy ra :
\(n+1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(0\) | \(-2\) | \(2\) | \(-4\) |
Vậy \(n\in\left\{-4;-2;0;2\right\}\)
\(b)\)
* Tính GTLN :
Ta có :
\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\)( câu a mình có làm rồi )
Để đạt GTLN thì \(\frac{3}{n+1}\) phải đạt GTLN hay \(n+1>0\) và đạt GTNN
\(\Rightarrow\)\(n+1=1\)
\(\Rightarrow\)\(n=0\)
Suy ra :
\(A=3+\frac{3}{n+1}=3+\frac{3}{0+1}=3+\frac{3}{1}=3+3=6\)
Vậy \(A_{max}=6\) khi \(n=0\)
* Tính GTNN :
Ta có :
\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\) ( theo câu a )
Để A đạt GTNN thì \(\frac{3}{n+1}\) phải đạt GTNN hay \(n+1< 0\) và đạt GTLN
\(\Rightarrow\)\(n+1=-1\)
\(\Rightarrow\)\(n=-2\)
Suy ra :
\(A=3+\frac{3}{n+1}=3+\frac{3}{-2+1}=3+\frac{3}{-1}=3-3=0\)
Vậy \(A_{min}=0\) khi \(n=-2\)
Chúc bạn học tốt ~
\(\frac{1}{n+1}+\frac{n}{n+1}+\frac{2n+1}{n+1}\)\(=\frac{1+n+2n+1}{n+1}\)\(=\frac{3n+2}{n+1}\)
Mình chỉ làm câu b thôi
b, Để A là số tự nhiên => \(\frac{63}{3n+1}\)
\(\Rightarrow3n+1\inƯ(63)\) \((1)\)
Mà \(n\in N\)=> \(3n+1\in N\) \((2)\)
Từ 1 và 2 => \(3n+1\in\left\{1;7\right\}\)
- Nếu 3n + 1 = 1 => 3n = 0 => n = 0
- Nếu 3n + 1 = 7 => 3n = 6 => n = 2
Vậy : \(\hept{\begin{cases}n=6\\n=2\end{cases}}\)