Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\frac{m\left(2+2m\right)}{2}}{m}=1+m\)
\(B=\frac{\frac{n\left(2+2n\right)}{2}}{n}=1+n\)
\(A< B\Rightarrow1+m< 1+n\Rightarrow m< n\)
Bài giải
Ta có : 2 + 4 + 6 + ... + 2m = [ ( 2m - 2 ) : 2 + 1 ] x ( 2m + 2 ) : 2 = m x ( m + 1 )
Thay vào A ta có : \(\frac{m\left(m+1\right)}{m}=m+1\)
Ta có : 2 + 4 + 6 + ... + 2n = [ ( 2n - 2 ) : 2 + 1 ] x ( 2n + 2 ) : 2 = n x ( n + 1 )
Thay vào B ta có : \(\frac{n\left(n+1\right)}{n}=n+1\)
Mà A < B nên \(m+1< n+1\text{ }\Rightarrow\text{ }m< n\)
Ta có : m và n là các số nguyên dương
Và \(A=\frac{2+4+6+...+2m}{m}=\frac{2.\left(1+2+....+m\right)}{m}=\frac{2.\left(m-1\right).m}{m}=2.\left(m-1\right)\)
B = \(\frac{2+4+6+...+2n}{n}=\frac{2.\left(1+2+3+...+n\right)}{n}=\frac{2.\left(n-1\right).n}{n}=2.\left(n-1\right)\)
Mà A < B
Nên 2 . ( m - 1 ) < 2 . ( n - 1 )
Do đó m - 1 < n - 1
Và m < n
Vậy m < n
số số hạng là :
(2n - 2) : 2 + 1 = n (số)
tổng là :
(2n + 2) x n : 2 = n(n + 1)
B = n(n + 1) : n= n + 1
số số hạng là :
(2m - 2) : 2 + 1= m
tổng là :
(2m + 2) x m ; 2 = m(m + 1)
A = m(m + 1) : m = m+1
vì A<B nên m + 1 < n +1
=> m < n
Tử số của A bằng:
Số số hạng: (2m-2)/2+1=2(m-1)/2+1=m
Tổng= (2+2m).m/2=2(m+1)/2=m.(m+1)
A=m.(m+1)/m=m+1
Câu B tương tự= n+1
Có A<B suy ra m+1<n+1
Suy ra m<n
T..i..c..k mk nha
\(A=\frac{2+4+6+...+2m}{m}=\frac{\left(2m+2\right)\cdot m}{2}=\frac{2\left(m+1\right)\cdot m}{2}=\left(m+1\right)\cdot m\)
\(B=\frac{2+4+6+...+2n}{n}=\frac{\left(2n+2\right)\cdot n}{2}=\frac{2\left(n+1\right)\cdot n}{2}=\left(n+1\right)n\)
Vì A < B
\(\Rightarrow\left(m+1\right)\cdot m<\left(n+1\right)\cdot n\)
=> m < n