Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/31 đến 1/90 có 60 số hạng mà 1/31 là lớn nhất nên ta lấy 1/31*60=60/31 < 2
a) 3/4x16/9-7/5:(-21/20)
=4/3-(-4/3)
=8/3
b)=7/3-1/3x[-3/2+(2/3+2)]
=7/3-1/3x[-3/2+8/3]
=7/3-1/3x7/6
=7/3-7/18
=35/18
c)=(20+37/4):9/4
=117/4:9/4
=13
d)=6-14/5x25/8-8/5:1/4
=6-35/4-32/5
=-11/4-32/5
=-183/20
câu 1 bình phg chuyển vế cậu sẽ thấy điều kì diệu
câu 2 adbđt \(8\sqrt[4]{4x+4}=4\sqrt[4]{4.4.4\left(x+1\right)}\le x+13\)
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{4}{6}+\frac{9}{12}+\frac{16}{20}=\left(\frac{1}{3}+\frac{4}{6}\right)+\left(\frac{1}{4}+\frac{9}{12}\right)+\left(\frac{1}{5}+\frac{16}{20}\right)\)
\(=1+1+1=3\)
Ta có\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{4}{6}+\frac{9}{12}+\frac{16}{20}=\left(\frac{1}{3}+\frac{4}{6}\right)+\left(\frac{1}{4}+\frac{9}{12}\right)+\left(\frac{1}{5}+\frac{16}{20}\right)\)
\(=\left(\frac{2+4}{6}\right)+\left(\frac{3+9}{12}\right)+\left(\frac{4+16}{20}\right)\)
\(=\frac{6}{6}+\frac{12}{12}+\frac{20}{20}\)
\(=1+1+1\)
\(=3\)
Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)
Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3
\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)
\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)
\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
bn lên mạng hoặc vào câu hỏi tương tự nha!
chúc bn hok tốt!
hahaha!
#conmeo#
Áp dụng bđt bu nhi a, ta có \(M^2\le3\left(\frac{a}{b+c+2a}+...\right)\)
mà \(\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
tương tự, ta có \(M^2\le\frac{3}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{c+b}\right)=\frac{9}{4}\)
=>\(M\le\frac{3}{2}\)
dấu = xảy ra <=> a=b=c
ban co the sao chep roi hoi cung duoc ma co gang len nhat ban se lam duoc bai nay va ca nhung bai cau ko hieu moi ngoui dau phai cai gi cung co the biet het dau, co gang len nhe Hai Anh