K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

thế mà bảo toán lớp 1 

29 tháng 12 2017

Áp dụng bđt bu nhi a, ta có \(M^2\le3\left(\frac{a}{b+c+2a}+...\right)\)

mà \(\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

tương tự, ta có \(M^2\le\frac{3}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{c+b}\right)=\frac{9}{4}\)

=>\(M\le\frac{3}{2}\)

dấu = xảy ra <=> a=b=c

23 tháng 11 2015

đây ko phải toán lớp 1 toán lớp 1 làm gì mà khó thế

Khi thử đổi biến chứng minh Iran 96 và cái kết.... Mà chả biết lúc đổi biến có tính sai chỗ nào ko mà kết quả nó nhìn khủng khiếp quá:(Cho a, b, c là các số không âm thỏa mãn không có 2 số nào đồng thời bằng 0. Chứng minh rằng:\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\)Cần...
Đọc tiếp

Khi thử đổi biến chứng minh Iran 96 và cái kết.... Mà chả biết lúc đổi biến có tính sai chỗ nào ko mà kết quả nó nhìn khủng khiếp quá:(

Cho a, b, c là các số không âm thỏa mãn không có 2 số nào đồng thời bằng 0. Chứng minh rằng:

\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)

Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\)

Cần chứng minh

\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow v^2\left(\left(3v^2+a^2\right)^2+\left(3v^2+b^2\right)^2+\left(3v^2+c^2\right)^2\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(a^2+b^2+c^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+81u^4-108u^2v^2+18v^4+12uw^3\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow135u^4v^2-144u^2v^4+12uv^2w^3-27uv^2+45v^6+3w^3\ge0\)

2
8 tháng 9 2019

WTF Toán Lớp 1

8 tháng 9 2019

thấy mẹ nhầm rồi,  quy đồng quên nhân:(( mai rảnh check lại:((

What??!!!!!!!

Đây là bài toán lớp 1 ???

Bn có nhầm ko z??

25 tháng 7 2020

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

25 tháng 7 2020

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

8 tháng 8 2019

toán lớp 1 ??? giỡn quài , phi logic :3

8 tháng 8 2019

Ap dung bdt AM-GM cho 2 so ko am A,B ta co 

\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)

VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)

    =>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)

Tu (2),(3) => DPCM

@Mỹ lệ \(Cho\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}.MinP=\Sigma a^2+\frac{\Sigma ab}{\Sigma_{cyc}a^2b}}\)Ta có \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)                                              \(=a^3+b^3+c^3+\Sigma_{cyc}a^2b+\Sigma ab^2\)Áp dụng bđt Cauchy có \(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)\(\Rightarrow3\left(a^2+b^2+c^2\right)=...=\ge3\left(a^2b+b^2c+c^2a\right)\)\(\Rightarrow...
Đọc tiếp

@Mỹ lệ \(Cho\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}.MinP=\Sigma a^2+\frac{\Sigma ab}{\Sigma_{cyc}a^2b}}\)

Ta có \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

                                              \(=a^3+b^3+c^3+\Sigma_{cyc}a^2b+\Sigma ab^2\)

Áp dụng bđt Cauchy có 

\(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)\(\Rightarrow3\left(a^2+b^2+c^2\right)=...=\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^2+b^2+c^2\ge a^2b+b^2c+c^2a\)

Lại có \(9=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)\(\Rightarrow ab+bc+ca=9-\left(a^2+b^2+c^2\right)\)

Khi đó \(P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}=a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\) 

                                                                                     \(=t-\frac{9-t}{t}\)

Với \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\Rightarrow t\ge3\)

Đến đây dùng pp điểm rơi là ra

1

Cho hỏi bạn hỏi hay trả lời vậy??????????????????

Ko đăng linh tinh ngoài câu hỏi nha!

20 tháng 5 2019

\(M=5\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)+2.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

Áp dụng BĐT Cauchy-schwarz ta có:

\(M\ge5.\left(\frac{3}{4}\right)^2+\frac{\left(x+y+z\right)^2}{3}+2.\frac{\left(1+1+1\right)^2}{4\left(x+y+z\right)}=5.\frac{9}{16}+\frac{\frac{9}{16}}{3}+2.\frac{9}{\frac{4.3}{4}}=9\)

Dấu " = " xảy ra <=> a=b=c=1/4  ( cái này bạn tự giải rõ nhé)

20 tháng 5 2019

:D. cái gì đây

chi ơi đề đây nhé , các bạn giải được thì giải không được thì thôi, mình chỉ viết đề cho bạn mình thôi mong các bạn thông cảm nhébài 1)cho \(x,y\in Q\) thỏa mãn \(\left(x+y\right)^3=xy\left(3x+3y+2xy\right)\) chứng minh rằng \(\sqrt{1-\frac{1}{xy}}\) là số hữ tỉbài 2 )cho a,b,c là các số hữu tỉ thỏa mãn ab+bc+ca=1. chứng minh rằng \(B=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\in Q\)chú ý chị chi...
Đọc tiếp

chi ơi đề đây nhé , các bạn giải được thì giải không được thì thôi, mình chỉ viết đề cho bạn mình thôi mong các bạn thông cảm nhé

bài 1)

cho \(x,y\in Q\) thỏa mãn \(\left(x+y\right)^3=xy\left(3x+3y+2xy\right)\) chứng minh rằng \(\sqrt{1-\frac{1}{xy}}\) là số hữ tỉ

bài 2 )

cho a,b,c là các số hữu tỉ thỏa mãn ab+bc+ca=1. chứng minh rằng \(B=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\in Q\)

chú ý chị chi em viết cho chị mà chị phải trả công em chứ còn thùy linh là khác 

bài 3) 

cho a,b,c là các số hữ tỉ thỏa mãn ab+bc+ca=1. tính \(C=a.\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+...\) (n0s theo quy luật chi nhé tớ biết đầu cậu thông minh nên tớ viết thế thôi)

bài 4) 

cho a,b,c >0 thỏa mãn abc=1. tính \(A=\frac{\sqrt{a}}{1+\sqrt{a}+\sqrt{ab}}+...\) (cái này cũng theo quy luật)

bài 5) 

giải các phương trình vô tỉ sau 

1,2 không phải làm nên không chép nữa

3)   \(\sqrt{x^2-10x+25}-3x=1\) 

4)    \(x-\frac{1}{2}\sqrt{x^2-8x+16}=2\)

5)   \(\sqrt{x^2-16}+\sqrt{x^2-5x+4}=0\)

6) chú ý đây viết mỏi tay luôn nhớ mai đãi bánh mì với kem đấy 

8
5 tháng 9 2017

lần sau đăng từng câu hỏi lên thôi còn như thế này ms nhìn đã mỏi mắt ns đến j lm

5 tháng 9 2017

đây mà gọi là toán lớp 1 à