Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)
\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(A=7.\frac{13}{28}\)
\(A=\frac{13}{4}\)
ta có: \(B=\frac{1}{10.9}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405}\)
\(=\frac{1}{2}.\left(\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{401.405}\right)\)
\(=\frac{1}{2}.\frac{1}{4}.\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{401.405}\right)\)
\(=\frac{1}{8}.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{17}-...-\frac{1}{401}+\frac{1}{405}\right)\)
\(=\frac{1}{8}.\left(\frac{1}{5}-\frac{1}{405}\right)\)
\(=\frac{1}{8}.\frac{80}{405}=\frac{10}{405}=\frac{2}{81}\)
a)\(\frac{1}{5.8}+\frac{1}{8.11}+........+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{x}-\frac{1}{x+3}\right)\)=\(\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)\)
=\(\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}\)=\(\frac{101}{1540}:\frac{1}{3}\)=\(\frac{303}{1540}\)
\(\frac{1}{x+3}\)=\(\frac{1}{5}-\frac{303}{1540}\)=\(\frac{1}{308}\)
\(\Rightarrow\)x+3=308
\(\Rightarrow\)x=308-3=305
b)Mk chưa nghĩ ra
b) \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{1}{2}.\frac{2}{9}\)
\(\Rightarrow\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{x+1-6}{6\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{x-5}{6x+6}=\frac{1}{9}\)
\(\Rightarrow9x-45=6x+6\)
\(\Rightarrow3x=51\)
\(\Rightarrow x=17\)
Vậy x = 17
\(\left(1\cdot2\right)^{-1}+\left(2\cdot3\right)^{-1}+\cdot\cdot\cdot+\left(9\cdot10\right)^{-1}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
A=\((\frac{1}{3.8}+\frac{1}{8.13}+...+\frac{1}{33.38})\)
A=\(\frac{1}{5}\left(\frac{5}{3.8}+\frac{5}{8.13}+...+\frac{5}{33.38}\right)\)
A=\(\frac{1}{5}\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{33}-\frac{1}{38}\right)\)
A=\(\frac{1}{5}.\left(\frac{1}{3}-\frac{1}{38}\right)\)
A=\(\frac{1}{5}.\frac{35}{114}\)
A=\(\frac{7}{114}\)
B=\((\frac{1}{3.10}+\frac{1}{10.17}+...+\frac{1}{31.38})\)
B=\(\frac{1}{7}\left(\frac{7}{3.10}+\frac{7}{10.17}+...+\frac{7}{31.38}\right)\)
B=\(\frac{1}{7}\left(\frac{1}{3}-\frac{1}{10}+\frac{1}{10}-\frac{1}{17}+...+\frac{1}{31}-\frac{1}{38}\right)\)
B=\(\frac{1}{7}\left(\frac{1}{3}-\frac{1}{38}\right)\)
B=\(\frac{1}{7}.\frac{35}{114}\)
B=\(\frac{5}{114}\)
⇒ \(\frac{A}{B}\)=\(\frac{7}{114}:\frac{5}{114}=\frac{7}{114}.\frac{114}{5}=\frac{7}{5}\)
Vậy \(\frac{A}{B}=\frac{7}{5}\)
A = \(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+....+\frac{1}{33}-\frac{1}{38}\)
=\(\frac{1}{3}-\frac{1}{38}\)
=\(\frac{35}{114}\)
B =\(\frac{1}{3}-\frac{1}{10}+\frac{1}{10}-\frac{1}{17}+...+\frac{1}{31}-\frac{1}{38}\)
=\(\frac{1}{3}-\frac{1}{38}\)
=\(\frac{35}{114}\)
=>tỉ số \(\frac{A}{B}\)= \(\frac{35}{114}:\frac{35}{114}\)=1