Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=A:B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(đk:x>0,x\ne1\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{x-1}{\sqrt{x}+1}=\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x-1\right)}=\dfrac{x-1}{\sqrt{x}}\)
b) \(P\sqrt{x}=m+\sqrt{x}\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}}.\sqrt{x}=m+\sqrt{x}\)
\(\Leftrightarrow x-1=m+\sqrt{x}\)
\(\Leftrightarrow m=x-\sqrt{x}-1\)
a) \(P=\dfrac{A}{B}=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(đk:x>0,x\ne1\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{x-1}{\sqrt{x}+1}=\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x-1\right)}=\dfrac{x-1}{\sqrt{x}}\)
b) \(P\sqrt{x}=m+\sqrt{x}\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}}.\sqrt{x}=m+\sqrt[]{x}\)
\(\Leftrightarrow x-1=m+\sqrt{x}\)
\(\Leftrightarrow m=x-\sqrt{x}-1\)
đề hơi sai, sửa này mới đúng nhaa
a) \(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
B =\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}+1}{x-1}\right)\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
= \(\dfrac{x+2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
= \(\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
= \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) (đpcm)
b, x = \(4-\sqrt{12}\) = \(\left(\sqrt{3}-1\right)^2\) => \(\sqrt{x}=\sqrt{3}-1\) (1)
Thay (1) vào B, ta được : \(B=\dfrac{\sqrt{3}-1-1}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-2}{\sqrt{3}}\)
c, Để \(\sqrt{x}+1\ge2x-2\sqrt{x}-3\)
<=> \(2x-3\sqrt{x}-4\le0\)
xem lại đề hoặc nếu đề chuẩn rồi í thì c pt thành nhân tử rồi lấy trong khoảng (có lấy dấu bằng) =(( chứ đà này chuẩn bị rối
P = (\(\dfrac{1}{\sqrt{x}-1}\) - \(\dfrac{1}{\sqrt{x}}\)) : (\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)) với 0 < \(x\) ≠ 1; 4
P = \(\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): (\(\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right).\left(\sqrt{x-2}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\))
P = \(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): \(\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)
P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) : \(\dfrac{3}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)
P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) \(\times\) \(\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\)
P = \(\dfrac{\sqrt{x}-2}{3.\sqrt{x}}\)
P = \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\)
b, P = \(\dfrac{1}{4}\)
⇒ \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\) = \(\dfrac{1}{4}\)
⇒4\(x\) - 8\(\sqrt{x}\) = 3\(x\)
⇒ 4\(x\) - 8\(\sqrt{x}\) - 3\(x\) = 0
\(x\) - 8\(\sqrt{x}\) = 0
\(\sqrt{x}\).(\(\sqrt{x}\) - 8) = 0
\(\left[{}\begin{matrix}x=0\\\sqrt{x}=8\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=64\end{matrix}\right.\)
\(x=0\) (loại)
\(x\) = 64
a) M = \(\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\). \(\dfrac{x-\sqrt{x}}{x}\) ( x>0)
M = \(\dfrac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\). \(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x}\)
M = \(\dfrac{4}{\sqrt{x}+1}\)
b) M>1 => 4 > \(\sqrt{x}\) + 1 > 0
=> 3 > \(\sqrt{x}\) > -1
=> 9>x>0
Đúng thì like giúp mik nha bạn. Thx
1: Khi x=9 thì \(A=\dfrac{3+1}{3-1}=\dfrac{4}{2}=2\)
2: \(P=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
3: 2P=2*căn x+5
=>\(\dfrac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\)
=>\(2x+5\sqrt{x}-2\sqrt{x}-2=0\)
=>\(2x+3\sqrt{x}-4=0\)
=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)
=>\(2\sqrt{x}-1=0\)
=>x=1/4
Câu 2:
a,
diện tích nhựa là: 2π. (0,4:2). 16= 6,4π (cm2)
b,
gọi chữ số hàng chục là a (a>0, a ∈N)
hàng đơn vị là b (b∈N)
hiệu 2 chữ số là: a-b=3 (1)
tổng bình phương 2 chữ số là: a2+b2=45 (2)
từ (1) và (2) ta có hpt:
\(\left\{{}\begin{matrix}a-b=3\\a^2+b^2=45\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a=6\\b=3\end{matrix}\right.\)
vậy chữ số đó là 63
Câu 1
a, Thay x=25 vào biểu thức B ta có
B=\(\dfrac{\sqrt{25}-3}{\sqrt{25}-1}=\dfrac{5-3}{5-1}=\dfrac{2}{4}=\dfrac{1}{2}\)
b, Ta có M=\(A\cdot B\)
⇒\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right)\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
=\(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
=\(\dfrac{3x-3\sqrt{x}}{\left(\sqrt{x}+3\right)}\cdot\dfrac{1}{\sqrt{x}-1}\)
=\(\dfrac{3\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
=\(\dfrac{3\sqrt{x}}{\sqrt{x}+3}\)
c, Để M<\(\sqrt{M}\)
Thì\(\text{}\text{}\text{}\text{}\dfrac{3\sqrt{x}}{\sqrt{x}+3}< \sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}+3}}\)
⇔\(\text{}\text{}\text{}\text{}\dfrac{3\sqrt{x}}{\sqrt{x}+3}< \dfrac{\sqrt{3\sqrt{x}\left(\sqrt{x}+3\right)}}{\sqrt{x}+3}\)
⇔\(\text{}\text{}\text{}\text{}3\sqrt{x}< \sqrt{3\sqrt{x}\left(\sqrt{x}+3\right)}\)
⇔\(\text{}\text{}\text{}\text{}9x< 3\sqrt{x}\left(\sqrt{x}+3\right)\)
⇔\(\text{}\text{}\text{}\text{}3\sqrt{x}< \sqrt{x}+3\)
⇔\(\text{}\text{}\text{}\text{}2\sqrt{x}< 3\)
⇔\(\text{}\text{}\text{}\text{}\sqrt{x}< \dfrac{3}{2}\)
⇒\(\left\{{}\begin{matrix}x\ge0\\x< \dfrac{9}{4}\end{matrix}\right.\)
⇒\(0\le x< \dfrac{9}{4}\)
\(a,P=A:B=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x-1\right)}=\dfrac{x-1}{\sqrt{x}}\\ b,P\sqrt{x}=m+\sqrt{x}\\ \Leftrightarrow x-1=m+\sqrt{x}\\ \Leftrightarrow x-\sqrt{x}-m-1=0\)
Để tồn tại x thì PT phải có nghiệm hay \(\Delta=1-4\left(-m-1\right)\ge0\)
\(\Leftrightarrow4m+5\ge0\\ \Leftrightarrow m\ge-\dfrac{5}{4}\)