Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A= \(\frac{5n+1}{n+1}\)
thì \(5n+1\)chia hết cho n +1 nên n+1 thuộc U(5)=1, 5.-1,-5
Ta có
Nếu n+1 =1 thì suy ra n =0
....n+1 = -1 thì suy ra n= -2
... n+1=5 thì suy ra n =4
....n+1= -5 thì suy ra n = -6
vây n thuộc 0, -2, 4, -6
Để \(A=\frac{5n+1}{n+1}\in Z\) \(\Leftrightarrow5n+1⋮n+1\)
\(\Leftrightarrow\) \(5n+1-5\left(n+1\right)⋮n+1\) (Vì 5(n+1)⋮n+1)
\(\Leftrightarrow5n+1-5n-5⋮n+1\)
\(\Leftrightarrow-4⋮n+1\)
\(\Rightarrow n+1\in\) Ư\(\left(-4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow n\in\left\{0;1;3;-2;-3;-5\right\}\)
Mà \(n\in N\) nên \(n\in\left\{0;1;3\right\}\)
Vậy để \(A\) nguyên thì \(n\in\left\{0;1;3\right\}\) (\(n\in N\))
\(A=\dfrac{6n+3-2}{2n+1}=3-\dfrac{2}{2n+1}\)
Để A max thì 2/2n+1 min
mà n nguyên
nên 2n+1=-1
=>2n=-2
=>n=-1
\(\Leftrightarrow\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{375}{376}\)
\(\Leftrightarrow1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{375}{376}\)
\(\Leftrightarrow1-\dfrac{1}{x+3}=\dfrac{375}{376}\)
\(\Leftrightarrow\dfrac{1}{x+3}=1-\dfrac{375}{376}=\dfrac{1}{376}\)
\(\Rightarrow x+3=376\)
\(\Rightarrow x=373\)
2: \(A=9^n\cdot81-9^n+3^n\cdot9+3^n\)
\(=9^n\cdot80+3^n\cdot10\)
\(=10\left(9^n\cdot8+3^n\right)⋮10\)
\(A=\frac{5n+1}{n+1}=\frac{5\left(n+1\right)-4}{n+1}=\frac{5\left(n+1\right)}{n+1}-\frac{4}{n+1}=5-\frac{4}{n+1}\left(ĐK:n\ne-1\right)\)
Để A nguyên thì \(4⋮n+1\)hay \(n+1\inƯ\left(4\right)\)( Ư(4) là số tự nhiên )
Ta có bảng sau :
Ư(4) | 1 | 2 | 4 |
n + 1 | 1 | 2 | 4 |
n | 0 | 1 | 3 |
Vậy để A nguyên thì \(n\in\left\{0,1,3\right\}\)
Đề thiếu điều kiện \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\) nữa đấy
Ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
\(=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}\)
\(=\dfrac{a+b+c}{a+b+c}\)
\(=1\)
Với \(\dfrac{a+b-c}{c}=1\)
\(\Rightarrow a+b-c=c\)
\(\Rightarrow a+b=2c\left(1\right)\)
Với \(\dfrac{b+c-a}{a}=1\)
\(\Rightarrow b+c-a=a\)
\(\Rightarrow b+c=2a\left(2\right)\)
Với \(\dfrac{c+a-b}{b}=1\)
\(\Rightarrow c+a-b=b\)
\(\Rightarrow c+a=2b\left(3\right)\)
Ta lại có:
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
\(=\left(\dfrac{b}{b}+\dfrac{a}{b}\right)\left(\dfrac{c}{c}+\dfrac{b}{c}\right)\left(\dfrac{a}{a}+\dfrac{c}{a}\right)\)
\(=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\)
Thay (1) , (2) và (3) vào ta được
\(=\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}\)
\(=\dfrac{8abc}{abc}\)
\(=8\)
A nguyên<=> 5n + 1 chia hết n+1
có 5n+1=5(n+1) -4
=> 4 chia hết n+1
=>n thuộc 0 , 3 ( n thuộc N loại giá trị âm
Ta có :
\(A=\frac{5n+1}{n+1}=\frac{5n+5-4}{n+1}=5-\frac{4}{n+1}\)
Để A nguyên <=> 4/n+1 là số nguyên \(\Leftrightarrow4⋮n+1\Leftrightarrow n+1\inƯ\left(4\right)\Leftrightarrow n+1\in\left\{-1;1;2;-2;4;-4\right\}\)
Do n là số tự nhiên => \(n+1\in\left\{1;2;4\right\}\Rightarrow n\in\left\{0;1;3\right\}\)
Vậy với \(n\in\left\{0;1;3\right\}\)thì A nguyên
$A=\frac{5n+1}{n+1}=\frac{5(n+1)-4}{n+1}=5-\frac{4}{n+1}\in \mathbb{Z}$
$\Leftrightarrow n+1\in Ư(4)=\left\{-4;-2;-1;1;2;4\right\}$
Mà $n\in\mathbb{N}$
$\Rightarrow n\in\left\{0;1;3\right\}$
\(A=\dfrac{5n+1}{n+1}=\dfrac{5\left(n+1\right)-4}{n+1}=\dfrac{5\left(n+1\right)}{n+1}-\dfrac{4}{n+1}=5-\dfrac{4}{n+1}\).ĐK:n≠-1
để \(Anguy\text{ê}n.th\text{ì}4⋮(n+1)\\ \Rightarrow n+1\in\text{Ư}\left(4\right)=\left\{1;2;4\right\}\)
ta có bảng sau :
vậy....