Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n-5}{n+1}\in Z\)
\(\Rightarrow n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
\(\Rightarrow6⋮n-1\)
\(\Rightarrow n-1\inƯ\left(6\right)\)
\(\Rightarrow n-1\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow n\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)
Theo mình là :
\(\frac{n-5}{n+1}=\frac{n-6+1}{n+1}=\frac{-6}{n+1}\)
=> n + 1 \(\in\) Ư (-6) = {1;-1;2;-2;3;-3;6;-6}
=> n = { 0;-2;1;-3;2;-4;5;-7}
Mà n \(\ne\) 1 => n \(\in\) {0;-2;-3;2;-4;5;-7}
a. Để A là số nguyên=> n = {0;-3;2;-4;5;-7}
b Để A là tổi giản => n = -2
1.a) để A là số hữu tỉ thì 2n+3 nguyên và n - 1 khác 0
từ hai điều kiện trên suy ra n nguyên và n khác 1
b) để A nguyên thì 2n+3 ⋮ n - 1
⇒ 2(n - 1) +5 ⋮ n - 1
⇒ 5 ⋮ n - 1
⇒n ∈ {-4; 0; 2; 6}
2. x < y ⇔ \(\dfrac{a}{n}< \dfrac{b}{n}\)
\(\Rightarrow\dfrac{2a}{2n}< \dfrac{a+b}{2n}< \dfrac{2b}{2n}\Leftrightarrow x< z< y\)
a) n - 5 / n + 1
=> n + 1 - 6 / n + 1
=> 6 / n + 1
=> n + 1 thuộc Ư(6) = {1;2;3;6;-1;-2;-3;-6}
b) A tối giản => bỏ số âm
A cô thể thuộc {1;2;3;6}
Vì 1 - 5 là số âm => bỏ 1
Vì 2 - 5 âm => bỏ 2
Vì 3 - 5 âm => bỏ 5
Vậy để A tối giản => n = 6
Để D nguyên thì
8n-5 chia hết cho 3n+2
=> 24n-15 chia hết cho 3n+2
=> 24n+16-31 chia hết cho 3n+2
Vì 24n+16 chia hết cho 3n+2
=> -31 chia hết cho 3n+2
=> 3n+2 thuộc Ư(31)
3n+2 | n |
1 | -1/3 |
-1 | -1 |
31 | 29/3 |
-31 | -11 |
Mà n nguyên
=> n \(\in\){-1; -11}
Gọi ƯCLN(8n-5; 3n+2) là d. Ta có:
8n-5 chia hết cho d => 24n-15 chia hết cho d
3n+2 chia hết cho d => 24n+16 chia hết cho d
=> 24n+16-(24n-15) chia hết cho d
=> 31 chia hết cho d
Giả dử phân số rút gọn được
=> 3n+2 chia hết cho 31
=> 3n+2+31 chia hết cho 31
=> 3n+33 chia hết cho 31
=> 3(n+11) chia hết cho 31
=> n+11 chia hết cho 31
=> n = 31k-11
KL: Để D tối giản thì n \(\ne\)31k-11
A= \(\dfrac{3x+2}{x-3}\)= \(\dfrac{3\left(x-3\right)+11}{x-3}\)= 3 + \(\dfrac{11}{x-3}\)
Để A là số nguyên <=> \(\dfrac{11}{x-3}\) là số nguyên
<=> 11 chia hết cho x-3
<=> x-3 thuộc Ư(11)
Ta có bảng sau
x-3 | 1 | -1 | 11 | -11 |
x | 4 | 2 | 14 | -8 |
Vậy x thuộc { 4;2;14;-8}
a, A= \(\dfrac{3x+2}{x-3}\)
Để A là số nguyên⇒ 3x+ 2⋮ x- 3
Vì x- 3⋮ x- 3
⇒ 3.(x- 3)⋮ x- 3
⇒ 3x- 3.3⋮ x-3
⇒ 3x- 9⋮ x-3
Mà 3x+ 2⋮ x-3
⇒ ( 3x+ 2)- ( 3x- 9)⋮ x-3
⇒ 3x+ 2- 3x+ 9⋮ x-3
⇒ ( 3x- 3x)+ ( 2+ 9)⋮ x- 3
⇒ 11⋮ x- 3
⇒ x- 3∈ Ư(11)
⇒ x- 3∈ ( -11; -1; 1; 11)
⇒ x∈ ( -8; 2; 4; 14)
Vậy....................
b, B= \(\dfrac{x^2+3x-7}{x+3}\)
Để B là số nguyên⇒ x2+3x-7 ⋮ x+3
Vì x+ 3⋮ x+ 3
⇒ x(x+3)⋮ x+ 3
⇒ x2+x.3⋮ x+ 3
Mà x2+ 3x- 7⋮ x+ 3
⇒ (x2+x.3)-( x2+3x-7)⋮ x+ 3
⇒ x2+ x.3- x2 -3x+ 7⋮ x+3
⇒ (x2-x2)+(3x- 3x)+ 7⋮ x+ 7
⇒ 7⋮ x+ 7
⇒ x+ 7∈ Ư(7)
⇒ x+ 7∈ (-7; -1; 1; 7)
⇒ x∈ ( -14; -8; -6; 0)
Vậy......................................
c, C= \(\dfrac{2x-1}{x+2}\)
Để C là số nguyên⇒ 2x-1⋮ x+2
Vì x+ 2⋮ x+2
⇒ 2( x+2)⋮ x+2
⇒ 2x+ 4⋮ x+2
Mà 2x- 1⋮ x+2
⇒ (2x+4)- (2x-1)⋮ x+2
⇒ 2x+ 4- 2x+ 1⋮ x+2
⇒ (2x-2x)+ (4+1)⋮ x+2
⇒ 5⋮ x+2
⇒ x+2∈ Ư(5)
⇒ x+2∈ (-5; -1; 1; 5)
⇒ x∈ ( -7; -3; -1; 3)
Vậy..........................................