K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

Theo tính chất của dãy tỉ số bằng nhau ta có

ab =bc =cd =a+b+cb+c+d 

Do đó

(a+b+cb+c+d )3=a+b+cb+c+d .a+b+cb+c+d .a+b+cb+c+d =ab .bc .cd =ad

Theo tính chất của dãy tỉ số bằng nhau ta có
ab = bc = cd = a + b + cb + c + d
Do đó
(a + b + cb + c + d)3 = a + b + cb + c + d.a + b + cb + c + d.a + b +
cb + c + d = ab.bc.cd = ad

6 tháng 3 2020

Bạn tham khảo link này :

 https://h.vn/hoi-dap/question/478245.html

Hok tốt 

# Chi

28 tháng 7 2019

Viet lai de bai

Cho \(\frac{a}{b}=\frac{c}{d}\)

CMR:\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)

Bai lam:

Dat \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta co:

\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)

\(\frac{ab}{cd}=\frac{bk\cdot b}{dk\cdot d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)

25 tháng 8 2017

Đặt:

\(\dfrac{a}{c}=\dfrac{c}{b}=k\Rightarrow\left\{{}\begin{matrix}a=ck\\c=bk\\a=bk^2\end{matrix}\right.\)

\(\dfrac{a}{b}=\dfrac{bk^2}{b}=k^2\)

\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{ck^2+bk^2}{b^2+c^2}=\dfrac{k^2\left(c^2+b^2\right)}{b^2+c^2}=k^2\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{a^2+c^2}{b^2+c^2}\)

\(\Rightarrowđpcm\)

Tương tự

13 tháng 12 2017

Do \(ab=c^2\)   suy ra:

\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)

Vậy \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)(đpcm)

13 tháng 12 2017

\(\frac{a^2+c^2}{b^2+c^2}=\frac{ab+a^2}{ab+b^2}\)

                \(=\frac{a\left(a+b\right)}{b\left(a+b\right)}\)

              \(=\frac{a}{b}\)

Vậy \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)