K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LH
0
LM
0
YA
0
18 tháng 2 2022
a, \(A=\dfrac{n+5}{n+4}=\dfrac{n+4+1}{n+4}=1+\dfrac{1}{n+4}\Rightarrow n+4\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 4 | 1 | -1 |
n | -3 | -5 |
b, đk n khác 4
Gọi ƯCLN (n+5;n+4) = d ( d\(\in Z\))
n + 5 - n - 4 = 1 => d = 1
Vậy A là phân số tối giản với mọi giá trị nguyên, n khác 4
T
1
TK
1
AH
Akai Haruma
Giáo viên
31 tháng 10
Lời giải:
$\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{a}{b}-\frac{c}{d}<0\Rightarrow \frac{ad-bc}{bd}<0$
$\Rightarrow ad-bc<0$ (do $bd>0$ với $b,d\in\mathbb{N}^*$)
Xét hiệu:
$\frac{2014a+c}{2014b+d}-\frac{c}{d}=\frac{d(2014a+c)-c(2014b+d)}{d(2014b+d)}$
$=\frac{2014(ad-bc)}{d(2014b+d)}<0$ do $ad-bc<0$ và $d(2014b+d)>0$ với mọi $b,d\in\mathbb{N}^*$
$\Rightarrow \frac{2014a+c}{2014b+d}<\frac{c}{d}$
Do \(\dfrac{a}{b}< 1\) nên a < b. Suy ra an < bn.
Ta có \(a\left(b+n\right)=ab+an< ab+bn=b\left(a+n\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\)