Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Đoạn thẳng chứ nhỉ??
*Công thức: \(\frac{n\left(n+1\right)}{2}\)
_Giải:
-Ta có: 2 điểm vẽ 1 đt
=> n điểm sẽ vẽ đc n-1 đt
-Lược bỏ những đt trùng nhau
=>Số đt có là: [n(n-1)]/2(đoạn thẳng)
b/
-Ta có: \(\hept{\begin{cases}5\widehat{B}+\widehat{A}=180^o\left(1\right)\\2\widehat{B}+\widehat{A}=90^o\left(2\right)\end{cases}}\)
-Lấy: (1) trừ (2) vế theo vế.
-Ta được: \(\hept{\begin{cases}3\widehat{B}=90^0\\\widehat{A}=90^0-2\widehat{B}\end{cases}\Leftrightarrow\hept{\begin{cases}\widehat{B}=30^0\\\widehat{A}=90^0-60^0=30^0\end{cases}}}\)
-Vậy: \(\widehat{A}=\widehat{B}=30^0\)
Gọi A = a + 2b và B = abb
Ta có : B = 100a + 11b và :
100A = 100 . ( a + 2b )
100A = 100a + 200b
=> 100A - B = 100a + 200b - 100a - 11b
=> 100A - B = 200b - 11b = 189b chia hết cho 7 ( vì 189 chia hết cho 7 )
=> 100A - B chia hết cho 7
mà A chia hết cho 7 => 100A chia hết cho 7 => B chia hết cho 7 ( đpcm )
1)
Ta có : \(6a+9b=3.\left(2a+3b\right)\)(đặt 3 làm thừa số chung )
Vì \(3⋮3\)
\(\Leftrightarrow3.\left(2a+3b\right)⋮3\left(đpcm\right)\)
2)
Ta có : \(2a+4b=2a+2b+2b⋮3\)
\(4a+2b=2a+2a+2b\)
Vì \(\hept{\begin{cases}2a⋮3\\2b⋮3\end{cases}}\Rightarrow2a+2a+2b⋮3\Leftrightarrow\left(4a+2b\right)⋮3\)
3)
Ta có : \(\overline{aaa}=a.111=a.3.37\)
Vì 37 chia hết cho 37
<=> a.3.37 chia hết cho 37
<=> \(\overline{aaa}⋮37\)
1) A= 43 . 52 / 82
A = (22)3 . 25 / (23)2
A = 26 . 25 / 26
A = 25
2)B) Do a không chia hết cho 5 nên a2 không chia hết cho 5
=> a2 chia 5 dư 1 hoặc 4
- Nếu a2 chia 5 dư 1 => a chia 5 dư 1 hoặc 4
+Với a chia 5 dư 1 => a - 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5
+ Với a chia 5 dư 4 => a + 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5
- Nếu a2 chia 5 dư 4 => a^2 + 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5
=> đpcm
Trả lời:
a, \(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(\Rightarrow2A=2\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)
b, Ta có:
\(2A-A=2+2^2+2^3+2^4+...+2^{2008}-\left(1+2+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow A=2+2^2+2^3+2^4+...+2^{2008}-1-2-2^2-2^3-...-2^{2007}\)
\(\Rightarrow A=\left(2-2\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+...+\left(2^{2007}-2^{2007}\right)+2^{2008}-1\)
\(\Rightarrow A=2^{2008}-1\) (đpcm)
Cho A= 1 + 2^1 + 2^2 + 2^3 + ....... + 2^2007
a) Tính 2A
suy ra 2A= 2 + 2^2 + 2^3 + 2^4 + ....... + 2^2008
b) Chứng minh A = 2^8 - 1
đang nghĩ b