Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử: abc+(2a+3b+c)\(⋮\)7, ta có:
abc+(2a+3b+c)=a.100+b.10+c+2a+3b+c
=a.98+7.b
Vì a.98\(⋮\)7 (98\(⋮\)7), 7.b\(⋮\)7\(\Rightarrow\)a.98+7.b\(⋮\)7
\(\Rightarrow\)abc+(2a+3b+c)\(⋮\)7
Mà theo đề bài abc\(⋮\)7\(\Rightarrow\)2a+3b+c\(⋮\)7(theo tính chất chia hết của 1 tổng)
abc chia hết cho 7 => 100a+10b+c chia hết cho 7
Mà 98a và 7b đều chia hết cho 7
=> 100a+10b+c - 98a - 7b chia hết cho 7
Hay 2a + 3b + c chia hết cho 7
=> ĐPCM
k mk nha
Có: a+5b chia hết cho 7
=> 2.(a+5b)\(⋮\) 7
\(\Leftrightarrow2a+10b⋮7\)
\(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )
\(\Leftrightarrow2a+3b\) chia hết cho 7
=> điều phải chứng minh
abc=100a+10b+c=(98a+7b)+(2a+3b+c)=7(14a+b)+(2a+3b+c) không chia hết cho 7 vì 2a+3b+c không chia hết cho 7
abc chia hết cho 7
=>100a+10b+c chia hết cho 7
=>2a+3b+c+98a+7b chia hết cho 7
=>2a+3b+c+7.(14a+b) chia hết cho 7
Mà 7.(14a+b) chia hết cho 7
Nên: 2a+2b+c chia hết cho 7
Ta thấy abc = 100a + 10b + c = (98a + 7b) + (2a + 3b + c) = 7(14a + b) + (2a + 3b + c)
Thấy ngay 7(14a + b) chia hết cho 7 nên nếu 2a + 3b + c không chia hết cho 7 thì tổng 100a + 10b + c không chia hết cho 7. Nói cách khác abc không chia hết cho 7.
a chia hết cho 7 => a=7q
b chia hết cho 7 => b=7p
c chia hết cho 7 => c=7e
=> 2a+3b+c=2.7q+3.7p+7e=7(2q+3p+e) chia hết cho 7
=> 2a+3b+c chia hết cho 7
k mình nhé