K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Vãi Phân

2 tháng 4 2017

Đm không biết thì trả lời làm chi!!!!!!!!!!!!

21 tháng 7 2017

Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu

a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b

b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)

Nhân vế với vế ta được :

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)

Dấu "="xảy ra tại a=b

21 tháng 7 2017

Bài 1.

Vì a, b, c, d \(\in\) N*, ta có:

\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)

\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)

\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)

\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)

Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.

Vậy M không có giá trị là số nguyên.

4 tháng 6 2017

a) Ta có : điều đề bài cho:\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\)\(\dfrac{a}{b}+1=\dfrac{c}{d}+1\)

=)\(\dfrac{a}{b}+\dfrac{b}{b}=\dfrac{c}{d}+\dfrac{d}{d}\)

=)\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)(đpcm)

b) Điều đề bài cho:

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\)\(\dfrac{a}{b}-1=\dfrac{c}{d}-1\)

\(\Rightarrow\)\(\dfrac{a}{b}-\dfrac{b}{b}=\dfrac{c}{d}-\dfrac{d}{d}\)

\(\Rightarrow\)\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)(đpcm)

4 tháng 6 2017

NHT số 2 :))

17 tháng 3 2017

ta có:\(\dfrac{a}{b}< \dfrac{c}{d}=>a.d< c.b\)

ad+ab<cb+ab

hay a.(d+b)<b.(c+a)

=>\(\dfrac{a}{b}< \dfrac{c+a}{d+b}\)(1)

ad<cb

=>ad+dc<bc+cd

d.(a+c)<c.(b+d)

=>\(\dfrac{a+c}{b+d}< \dfrac{c}{d}\)(2)

từ (1) và (2) ta có :

=>\(\dfrac{a}{b}< \dfrac{c+a}{d+b}\)\(< \dfrac{c}{d}\)

Tick đi ahihi :D

17 tháng 3 2017

nếu thì ???????????????????

gianroi

20 tháng 7 2017

Theo đề bài ta có \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\) ( tính chất dãy tỉ số = nhau )

=> \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\) ( tính chất dãy tỉ số = nhau )

20 tháng 7 2017

Bạn giải thích rõ chỗ suy ra đc không

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:
Vì $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}$ nên:

$\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}$

Hay $\left(\frac{a}{b}\right)^3=\frac{a}{d}$

Ta có đpcm.

 

\(\left(\dfrac{a}{b}\right)^3=\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{a}{b}=\dfrac{a}{b}\cdot\dfrac{b}{c}\cdot\dfrac{c}{d}=\dfrac{a}{d}\)