Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, b, c là ba số nguyên tố khác nhau.
Ta có [a, b]= a.b, [b, c]= b.c, [c.a]= c.a
Do đó \(\dfrac{1}{\left[a,b\right]}+\dfrac{1}{\left[b,c\right]}+\dfrac{1}{[c,a]}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\)
Ta có: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\le\dfrac{1}{2.3}+\dfrac{1}{3.5}+\dfrac{1}{5.2}\)
mả \(\dfrac{1}{2.3}+\dfrac{1}{3.5}+\dfrac{1}{5.2}=\dfrac{5+2+3}{30}=\dfrac{1}{3}\).
Do đó \(\dfrac{1}{\left[a,b\right]}+\dfrac{1}{\left[b,c\right]}+\dfrac{1}{\left[c,a\right]}\le\dfrac{1}{3}\).
Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu
a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b
b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)
Nhân vế với vế ta được :
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)
Dấu "="xảy ra tại a=b
Bài 1.
Vì a, b, c, d \(\in\) N*, ta có:
\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)
\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)
\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)
\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)
Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.
Vậy M không có giá trị là số nguyên.
a: Gọi phân số cần tìm có dạng là \(\dfrac{a}{b}\left(b\ne0\right)\)
Theo đề, ta có: \(\dfrac{1}{3}< \dfrac{a}{b}< \dfrac{1}{2}\)
=>\(0,\left(3\right)< \dfrac{a}{b}< 0,5\)
=>\(\dfrac{a}{b}=0,4;\dfrac{a}{b}=0,42\)
=>\(\dfrac{a}{b}=\dfrac{2}{5};\dfrac{a}{b}=\dfrac{21}{25}\)
Vậy: Hai phân số cần tìm là \(\dfrac{2}{5};\dfrac{21}{25}\)
b: a/b<1
=>a<b
=>\(a\cdot c< b\cdot c\)
=>\(a\cdot c+ab< b\cdot c+ab\)
=>\(a\left(c+b\right)< b\left(a+c\right)\)
=>\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
AD tích chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)
\(\Rightarrow DPCM\)
Câu 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=k+1\)
\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=k+1\)
Do đó: \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
Á p dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{a-b}{c-d}\right)^2\Leftrightarrow\dfrac{a}{c}.\dfrac{b}{d}=\left(\dfrac{a-b}{c-d}\right)^2\)
suy ra đpcm
Câu 2:
\(\Leftrightarrow x\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{78}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow2x\left(\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{156}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow x\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{12}-\dfrac{1}{13}\right)=\dfrac{110}{39}\)
\(\Leftrightarrow x\cdot\dfrac{10}{39}=\dfrac{110}{39}\)
=>x=11
Lời giải:
Vì $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}$ nên:
$\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}$
Hay $\left(\frac{a}{b}\right)^3=\frac{a}{d}$
Ta có đpcm.
\(\left(\dfrac{a}{b}\right)^3=\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{a}{b}=\dfrac{a}{b}\cdot\dfrac{b}{c}\cdot\dfrac{c}{d}=\dfrac{a}{d}\)