K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

Ta có :

\(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\) (1)

\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)( Cộng mỗi phân số vs 1 )

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\) (2)

Với a ,b ,c ,d là các số dương , áp dụng BĐT Svacsơ , ta có :

\(\hept{\begin{cases}\frac{1}{b+c}+\frac{1}{d+a}\ge\frac{4}{a+b+c+d}\\\frac{1}{c+d}+\frac{1}{a+b}\ge\frac{4}{a+b+c+d}\end{cases}}\)

Suy ra : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\frac{4\left(a+c\right)+4\left(b+d\right)}{a+b+c+d}\)

\(\Leftrightarrow\left(2\right)\)\(\Leftrightarrow\left(1\right)\)( Điều cần CM )

9 tháng 1 2020

áp dụng bất đẳng thức Cauchy-schwaz

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{\left(1+1+1+1\right)^2}{a+b+c+d}\)=\(\frac{16}{a+b+c+d}\)(đpcm)

26 tháng 3 2019

\(Để\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)

Thì \(\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)

Ta có : \(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)

\(\ge\left(a+c\right)\left(\frac{4}{a+b+c+d}\right)+\left(b+d\right)\left(\frac{4}{a+b+c+d}\right)=4\)(Áp dụng Cô-si dạng phân thức)

\(\Rightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)(Đpcm)

   Học tốt ~~

3 tháng 4 2019

Để \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)

\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)

\(\Leftrightarrow\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)

Ta có : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+c\right).\frac{4}{a+b+c+d}\left(1\right)\)(Áp dụng BĐT Cô-si)

\(\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\left(b+d\right).\frac{4}{a+b+c+d}\left(2\right)\)(Áp dụng BĐT Cô-si)

Từ (1) và (2) \(\Rightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)

\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=4\)(Điều phải chứng minh)

7 tháng 4 2019

Thank bạn Fire Sky very much ☺☺🙂☺☺!!

20 tháng 2 2018

a) Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có: 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(p=\frac{a+b+c}{2}\right)\)

Tương tự rồi cộng theo vế:

\(2VT\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=2VP\Leftrightarrow VT\ge VP\)

Dấu "=" khi \(a=b=c\)

b)sai đề

DD
13 tháng 7 2021

Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\)

\(>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)

\(=\frac{a+b+c+d}{a+b+c+d}=1\)

Tương tự ta cũng chứng minh được \(\frac{b}{a+b}+\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}>1\)

mà \(\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\right)+\left(\frac{b}{a+b}+\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}\right)\)

\(=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{d+a}=4\)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\)là số nguyên 

do đó \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)

\(\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\)(vì \(a\ne c\))

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac=bd\)(vì \(b\ne d\))

Khi đó \(abcd=ac.ac=\left(ac\right)^2\)là số chính phương. 

AH
Akai Haruma
Giáo viên
1 tháng 10 2019

Lời giải:

Điều kiện đề bài đã cho tương đương với:

\(\frac{a}{a+b}+\frac{b}{b+c}-1+\frac{c}{c+d}+\frac{d}{a+d}-1=0\)

\(\Leftrightarrow \frac{a}{a+b}-\frac{c}{b+c}+\frac{c}{c+d}-\frac{a}{a+d}=0\)

\(\Leftrightarrow a(\frac{1}{a+b}-\frac{1}{a+d})+c(\frac{1}{d+c}-\frac{1}{b+c})=0\)

\(\Leftrightarrow \frac{a(d-b)}{(a+b)(a+d)}+\frac{c(b-d)}{(d+c)(b+c)}=0\)

\(\Leftrightarrow (d-b)(\frac{a}{(a+b)(a+d)}-\frac{c}{(c+d)(c+b)})=0\)

\(\Leftrightarrow \frac{(d-b)(a-c)(bd-ac)}{(a+b)(a+d)(c+d)(c+b)}=0\)

\(\Rightarrow (d-b)(a-c)(bd-ac)=0\)

Mà $a,b,c,d$ đôi một khác nhau nên suy ra $bd-ac=0$

$\Rightarrow bd=ac$

$\Rightarrow abcd=(bd)^2$ là số chính phương với mọi $a,b,c,d$ nguyên dương.

Ta có đpcm.

AH
Akai Haruma
Giáo viên
17 tháng 9 2019

Lời giải:

Điều kiện đề bài đã cho tương đương với:

\(\frac{a}{a+b}+\frac{b}{b+c}-1+\frac{c}{c+d}+\frac{d}{a+d}-1=0\)

\(\Leftrightarrow \frac{a}{a+b}-\frac{c}{b+c}+\frac{c}{c+d}-\frac{a}{a+d}=0\)

\(\Leftrightarrow a(\frac{1}{a+b}-\frac{1}{a+d})+c(\frac{1}{d+c}-\frac{1}{b+c})=0\)

\(\Leftrightarrow \frac{a(d-b)}{(a+b)(a+d)}+\frac{c(b-d)}{(d+c)(b+c)}=0\)

\(\Leftrightarrow (d-b)(\frac{a}{(a+b)(a+d)}-\frac{c}{(c+d)(c+b)})=0\)

\(\Leftrightarrow \frac{(d-b)(a-c)(bd-ac)}{(a+b)(a+d)(c+d)(c+b)}=0\)

\(\Rightarrow (d-b)(a-c)(bd-ac)=0\)

Mà $a,b,c,d$ đôi một khác nhau nên suy ra $bd-ac=0$

$\Rightarrow bd=ac$

$\Rightarrow abcd=(bd)^2$ là số chính phương với mọi $a,b,c,d$ nguyên dương.

NV
16 tháng 3 2019

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)