Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/b+b/a-ab
=a/b+b/a-(a-b)
=a/b+b/a-a+b
=a/b-a+b/a+b
=(a-ab)/b+(b+ab/a)
=(a-a+b)/b-((b+a-b)a
=1+1
=2
vì a,b khác 0 => a.b khác 0
ta có: a/b + b/a - ab
=(a^2+b^2-a^2b^2)/ab
=[(a-b)^2+2ab-a^2b^2]/ab
=(a^2b^2+2ab-a^2b^2)/ab=2ab/ab=2 (do a-b=ab)
bạn dựa vào bài tương tự này nha :
Cho a,b,c,d là các số nguyên dương thỏa mãn: ab=cd. Chứng minh rằng: A=anan+bnbn+cncn+dndn là hợp số với mọi số nguyên dương n.
- langtuthattinh và The gunners thích
#2 Nguyen Duc Thuan
Sĩ quan
- Thành viên
- 367 Bài viết
- Giới tính:Nam
- Đến từ:THPT Chuyên Hùng Vương, Phú Thọ
Đã gửi 06-02-2013 - 22:17
Vào lúc 06 Tháng 2 2013 - 22:04, 'hoangtubatu955' đã nói:
Cho a,b,c,d là các số nguyên dương thỏa mãn: ab=cd. Chứng minh rằng: A=anan+bnbn+cncn+dndn là hợp số với mọi số nguyên dương n.
Đặt (a;c)=q thì a=qa1;c=qc1a=qa1;c=qc1 (Vs (a1;c1a1;c1=1)
Suy ra ab=cd ⇔ba1=dc1⇔ba1=dc1
Dẫn đến d⋮a1d⋮a1 đặt d=a1d1d=a1d1 thay vào đc:
b=d1c1b=d1c1
Vậy an+bn+cn+dn=q2an1+dn1cn1+qncn1+an1dn1=(cn1+an1)(dn1+qn)an+bn+cn+dn=q2a1n+d1nc1n+qnc1n+a1nd1n=(c1n+a1n)(d1n+qn)
là hợp số (QED)
\(ab=cd\Rightarrow\frac{a}{c}=\frac{d}{b}\)
Đặt \(\frac{a}{c}=\frac{d}{b}=k\Rightarrow\hept{\begin{cases}a=ck\\d=bk\end{cases}}\)
Khi đó : a2014 + b2014 + c2014 + d2014
= (ck)2014 + b2014 + c2014 + (bk)2014
= c2014(k2014 + 1) + b2014(k2014 + 1)
= (k2014 + 1)(c2014 + b2014) \(⋮\)(c2014 + b2014)
=> a2014 + b2014 + c2014 + d2014 là hợp số
trình bày theo cách khác
gọi ƯCLN (a,c)=m \(\Rightarrow\hept{\begin{cases}a=ma_1\\c=mc_1\end{cases}\left(a_1;c_1\inℤ\right),\left(a_1,c_1\right)=1}\)
vì a,b,c,d là số nguyên thỏa mãn ab=cd
\(\Rightarrow ma_1b=mc_1d\Leftrightarrow a_1b=c_1d\)nên \(a_1b⋮c_1\)
mà (a1;c1)=1 nên b chia hết cho c1 => b=nc1 => d=na1, do đó
\(a^{2014}+b^{2014}+c^{2014}+d^{2014}=\left(ma_1\right)^{2014}+\left(nc_1\right)^{2014}+\left(mc_1\right)^{2014}+\left(na_1\right)^{2014}\)
\(=a_1^{2014}\left(m^{2014}+n^{2014}\right)+c_1^{2014}\left(m^{2014}+n^{2014}\right)\)
\(=\left(m^{2014}+n^{2014}\right)\left(a_1^{2014}+c_1^{2014}\right)\)là hợp số