K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a+2b}{5c+2d}=\frac{3a-2b}{3c-2d}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{5a+2b}{5c+2d}=\frac{3a-2b}{3c-2d}\)

=> \(\frac{3c-2d}{5c+2d}=\frac{3a-2b}{5a+2b}\)

=> Đpcm

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{3a+2b}{a}=\dfrac{3bk+2b}{bk}=\dfrac{3k+2}{k}\)

\(\dfrac{3c+2d}{c}=\dfrac{3dk+2d}{dk}=\dfrac{3k+2}{k}\)

Do đó: \(\dfrac{3a+2b}{a}=\dfrac{3c+2d}{c}\)

b: \(\dfrac{2a-3b}{b}=\dfrac{2bk-3b}{b}=2k-3\)

\(\dfrac{2c-3d}{d}=\dfrac{2dk-3d}{d}=2k-3\)

Do đó: \(\dfrac{2a-3b}{b}=\dfrac{2c-3d}{d}\)

c: \(\dfrac{a}{a-2b}=\dfrac{bk}{bk-2b}=\dfrac{k}{k-2}\)

\(\dfrac{c}{c-2d}=\dfrac{dk}{dk-2d}=\dfrac{k}{k-2}\)

Do đó: \(\dfrac{a}{a-2b}=\dfrac{c}{c-2d}\)

27 tháng 8 2023

thank you

 

2 tháng 7 2023

a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}\) = \(\dfrac{3a}{3c}=\dfrac{2b}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{3a}{3c}=\dfrac{2b}{2d}=\dfrac{3a-2b}{2c-2d}\) (2)

Từ (1) và(2) ta có:

\(\dfrac{2a+5b}{2c+5d}\) =  \(\dfrac{3a-2b}{3c-2d}\)(đpcm)

 

 

 

 

2 tháng 7 2023

a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}\)  ⇒ \(\dfrac{a.b}{c.d}\) = \(\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a.b}{c.d}=\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\) = \(\dfrac{a^2+b^2}{c^2+d^2}\) (đpcm)

 

 

20 tháng 11 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=b.k;b=d.k\)

Thay :

(1) : \(\dfrac{3a+2b}{3a-2b}=\dfrac{3bk+2b}{3bk-2b}=\dfrac{b.\left(3.k+2\right)}{b.\left(3.k-2\right)}=\dfrac{3.k+2}{3.k-2}\)

(2) : \(\dfrac{3c+2d}{3c-2d}=\dfrac{3dk+2d}{3dk-2d}=\dfrac{d.\left(3.k+2\right)}{d.\left(3.k-2\right)}=\dfrac{3.k+2}{3.k-2}\)

Do đó : \(\dfrac{3a+2b}{3a-2b}=\dfrac{3c+2d}{3c-2d}\)

Bài 2:

a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{4a-3b}{a}=\dfrac{4\cdot bk-3b}{bk}=\dfrac{b\left(4k-3\right)}{bk}=\dfrac{4k-3}{k}\)

\(\dfrac{4c-3d}{c}=\dfrac{4\cdot dk-3d}{dk}=\dfrac{d\left(4k-3\right)}{dk}=\dfrac{4k-3}{k}\)

Do đó: \(\dfrac{4a-3b}{a}=\dfrac{4c-3d}{c}\)

b: \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)

\(\dfrac{3a^2+2b^2}{3c^2+2d^2}=\dfrac{3\cdot\left(bk\right)^2+2b^2}{3\cdot\left(dk\right)^2+2d^2}\)

\(=\dfrac{b^2\left(3k^2+2\right)}{d^2\left(3k^2+2\right)}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{3a^2+2b^2}{3c^2+2d^2}\)

16 tháng 1

còn bài một thì sao anh = ̄ω ̄=