Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Ta có : A + B = ( a + b - 5 ) + ( - b - c + 1 ) = a + b - 5 - b - c + 1 = a - 4 - c
C - D = ( b - c - 4 ) - ( b - a ) = b - c - 4 - b + a = a - 4 - c
\(\Rightarrow\text{ }A+B=C-D\)
Ta có : A + B = a + b - 5 + ( - b - c + 1 ) = a + b - 5 - b - c + 1 = a - c - 4 (1)
Ta lại có : C - D = b - c - 4 - ( b - a ) = b - c - 4 - b + a = - c - 4 + a = a - c - 4 (2)
Từ (1) và (2) ta suy ra :
A + B = C - D
Vậy : Ta có thể kết luận A + B = C - D
(a - b + c) - (a + c) = a - b + c - a - c = -b (đpcm)
(a + b) - (b - a) + c = a + b - b + a + c = 2a + c (đpcm)
-(a + b - c) + (a - b - c) = -a - b + c + a - b - c = -2b (đpcm)
a.(b + c) - a.(b + d) = a.(b + c - b - d) = a.(c - d) (đpcm)
a.(b - c) + a.(d + c) = a.(b - c + d + c) = a.(b + d) (đpcm)
Có vế trái = ac + ad + bc + bd - ab - ac - bd - cd = ad + bc - ab - cd = ad - cd + bc - ab = d(a - c) + b(c - a)
= d.(a - c) - b.(a - c) = (a - c)(d - b) = vế phải
Vậy (a + b)(c + d) - (a + d)(b + c) = (a - c)(d - b)
Xét : a^5-a = a.(a^4-1) = a.(a^2-1).(a^2+1) = (a-1).a.(a+1).(a^2-4+5)
= (a-2).(a-1).a.(a+1).(a+2)+5.(a-1).a.(a+1)
Ta thấy a-2;a-1;a;a+1;a+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 ; 1 số khác chia hết cho 4 ; 1 số chia hết cho 5
=> (a-2).(a-1).a.(a+1).(a+2) chia hết cho 2.4.5 = 40 (1)
Lại có : p là số nguyên tố > 2 => p lẻ => p = 2k+1 ( k thuộc N sao )
=> (p-1).(p+1) = 2k.(2k+2) = 4.k.(k+1)
Vì k;k+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2
=> (p-1).(p+1) chia hết cho 8
=> 5.(p-1).p.(p+1) chia hết cho 5.8=40 (2)
Từ (1) và (2) => a^5-a chia hết cho 40
Tương tự : b^5-b ; c^5-c ; d^5-d đều chia hết cho 40
=> (a^5+b^5+c^5+d^5)-(a+b+c+d) chia hết cho 40
Mà a^5+b^5+c^5+d^5 chia hết cho 40 => a+b+c+d chia hết cho 40
Tk mk nha
1)-(a+b-c)+(a-b-c)=a-b+c+a-b-c=-2b
2)a(b+c)-a(b+d)=a(b+c-b-d)=a(c-d)
3)a(b-c)+a(d+c)=a(b-c+d+c)=a(b+d)
chúc hok tốt :))))))
ak ở câu 1 sửa lại chút
1)-(a+b-c)+(a-b-c)=-a-b+c+a-b-c=-2b
\(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\)
\(\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\Leftrightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
cảm ơn bạn nhiều