K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

hình như dấu + dưới mẫu là nhân mới đúng

easy

\(VT\ge\frac{8}{\left(a+b\right)^2+\left(a+b\right)^2c}+\frac{8}{\left(b+c\right)^2+\left(b+c\right)^2c}+\frac{8}{\left(c+a\right)^2+\left(c+a\right)^2b}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

\(=\frac{8}{\left(a+b\right)^2\left(c+1\right)}+\frac{8}{\left(b+c\right)^2\left(a+1\right)}+\frac{8}{\left(c+a\right)^2\left(b+1\right)}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

đến đây ghép rồi dùng cô si

bài này trong đề thi của tỉnh nào đó ở nước nào đó ở hành tinh nào đó năm 2016-2017

13 tháng 4 2019

bạn làm luôn khúc sau dùm mik nhé, mik ko hiểu

áp dụng bđt cô si ta có:

\(\frac{a^8}{b^3}+a^2b^3\ge2a^5;\frac{b^8}{c^3}+b^2c^3\ge2b^5;\frac{c^8}{a^3}+c^2a^3\ge2c^5\)

\(\Rightarrow\frac{a^8}{b^3}+\frac{b^8}{c^3}+\frac{c^8}{a^3}\ge2\left(a^5+b^5+c^5\right)-\left(a^2b^3+b^2c^3+c^2a^3\right)\)

áp dụng bđt cô si ta có:

\(a^5+a^5+b^5+b^5+b^5\ge5\sqrt[5]{a^5.a^5.b^5.b^5.b^5}=5a^2b^3\)

\(b^5+b^5+c^5+c^5+c^5\ge5\sqrt[5]{b^5.b^5.c^5.c^5.c^5}=5b^2c^3\)

\(c^5+c^5+a^5+a^5+a^5\ge5\sqrt[5]{c^5.c^5.a^5.a^5.a^5}=5c^2a^3\)

\(\Rightarrow5\left(a^5+b^5+c^5\right)\ge5\left(a^2b^3+b^2c^3+c^2a^3\right)\Rightarrow a^5+b^5+c^5\ge a^2b^3+b^2c^3+c^2a^3\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)-\left(a^2b^3+b^2c^3+c^2a^3\right)\ge a^5+b^5+c^5\)

\(\frac{a^8}{b^3}+\frac{b^8}{c^3}+\frac{c^8}{a^3}\ge a^5+b^5+c^5\left(Q.E.D\right)\)

dấu = xảy ra khi a=b=c

AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Lời giải:

Từ \(4(a+b+c)=3abc\Rightarrow \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{3}{4}\)

Áp dụng BĐT AM-GM cho các số dương ta có:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{8}\geq 3\sqrt[3]{\frac{1}{a^3}.\frac{1}{b^3}.\frac{1}{8}}=\frac{3}{2}.\frac{1}{ab}\)

\(\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{8}\geq \frac{3}{2}.\frac{1}{bc}\)

\(\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{8}\geq \frac{3}{2}.\frac{1}{ac}\)

Cộng theo vế các BĐT vừa thu được:

\(2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\geq \frac{3}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)-\frac{3}{8}=\frac{3}{2}.\frac{3}{4}-\frac{3}{8}=\frac{3}{4}\)

\(\Rightarrow \frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\geq \frac{3}{8}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=2$

22 tháng 1 2018

Từ \(4\left(a+b+c\right)=3abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{3}{4}\)

Áp dụng BĐT AM-GM:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{8}\ge3\sqrt[3]{\frac{1}{a^3}\cdot\frac{1}{b^3}\cdot\frac{1}{8}}=\frac{3}{2ab}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế

\(2VT+\frac{3}{8}\ge\frac{3}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=\frac{9}{8}\)

\(\Leftrightarrow2VT\ge\frac{3}{4}\Leftrightarrow VT\ge\frac{3}{8}=VP\)

\("="\Leftrightarrow a=b=c=2\)

23 tháng 1 2018

thắng nguyễn , e tưởng Bất đẳng thức AM-AG khác cô si chứ

vd nhé cho a+b+c=3   ( dự đoán a=b=c=1

áp dụng BDT AM-AG

ta có

 \(3a+3-2\ge2\sqrt[3]{9a}-2=6-2=4\)

tức là ở đề bài cho 1a mình + thêm 2a tức là a+2a=3a thì mình phải trừ đi 2( vì a=1) để cho BDT vẫn như cũ chứ @@