K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2019

Nhớ lời nha

Áp dụng BĐT Bunhia ta có

(a+b+c)\(^2\)\(\le\)3(a\(^2\)+b\(^2\)+c\(^2\))

9\(\le\)3(a\(^2\)+b\(^2\)+c\(^2\))

3\(\le\)(a\(^2\)+b\(^2\)+c\(^2\))                            (1)

Áp dụng BĐT Bunhia ta có 

(a\(^2\)+b\(^2\)+c\(^2\))\(\le\)3(a\(^4\)+b\(^4\)+c\(^4\))                    (2)

Áp dụng BĐT Bunhia có 

(a\(^3\)+b\(^3\)+c\(^3\)\(\le\)(a\(^2\)+b\(^2\)+c\(^2\))(a\(^4\)+b\(^4\)+c\(^4\))                 (3)

Từ (1) (2) (3)

=>(a\(^3\)+b\(^3\)+c\(^3\))\(^2\)\(\le\)(a\(^4\)+b\(^4\)+c\(^4\))\(^2\)      

=> Đpcm

Dấu bằng xảy ra khi a=b=c

22 tháng 4 2019

Ai không biết BĐT Bunhia thì 

http://congthuc.edu.vn/bat-dang-thuc-bunhiacopxki/

16 tháng 7 2017

a) \(x.\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)=x.\left(x^2-16\right)-\left(x^4-1\right)=x^3-16x-x^4+1\)

ý này ko rút gọn được hết đâu.

b) \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\)

\(=y^4-81-y^4+4=-77\)

c)  \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2bc=a^2+b^2+c^2+2ab-2bc-2ac-a^2+2ac-c^2-2ab+2bc=b^2\)

16 tháng 7 2017

Trần Anh: Cảm ơn pạn nhiều nhé ~~!! ;) ;) ;) 

17 tháng 7 2016


A = 2a2b+ 2b2c+ 2a2c− a− b− c4

<=> A = 4a2c− ( a4+b+ c− 2a2b+ 2a2c− 2b2c)

<=> A = 4a2c− ( a− b+ c2)2

<=> A = ( 2ac + a− b+ c) ( 2ac − a+ b− c)

<=> A = [ (a+c)− b] ( b− (a−c)2)

<=> A = ( a+b+c) (a+c−b) (b+a−c) (b−a+c)
Mà a, b, c là 3 cạnh của tam giác nên: Mà a, b, ca, b, c là 33 cạnh của tam giác nên:\

a+b+c>0

a+c−b>0

b+a−c>0

b−a+c>

=> (a+b+c)(a+c−b)(b+a−c)(b−a+c)>0

A>0 (Dpcm)

9 tháng 7 2017
a) 9.x^3 b) (a-b)(a+b) c) (a^2-b)(a^4 - a^2.b + b^2) d) (2x+3)( 4.x^2-6x+9)
5 tháng 12 2018

\(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

Viết lại đề như sau: \(\hept{\begin{cases}x+y+z=3\\2xy-z^2=9\end{cases}}\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz-2xy+z^2=0\)

\(\Leftrightarrow x^2+y^2+2z^2+2yz+2xz=0\)

\(\Leftrightarrow\left(x+z\right)^2+\left(y+z\right)^2=0\)

\(\Leftrightarrow x=y=-z\Leftrightarrow\frac{1}{a}=\frac{1}{b}=-\frac{1}{c}\)

\(\Leftrightarrow a=b=-c\)

\(M=\left(a-3b+c\right)^{2018}=\left(a-3a-a\right)^{2018}=\left(3a\right)^{2018}\)

22 tháng 8 2017

c) 22/5 + 51/9 + 11/4 + 3/5 + 1/3 + 1/4
= 22/5 +3/5 +51/9 + 1/3 +11/4+1/4
= (22/5 +3/5) +(51/9 + 3/9) +(11/4+1/4)
= 25/5 +54/9 +12/4
= 5 +6 +3
= 14
d) (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15) 
= (5/30 + 3/30 +2/30 ) :(5/30 +3/30 -2/30)
= 10/30 : 6/30
= 1/3 : 1/5
= 5/3

22 tháng 8 2017

Cảm ơn pn Bexiu ^^ Nhưng đây là c/m mà bn ;) ;) Có phải tính đâu =)) Nhưng ko sao ah :3 Cảm ơn pn đã giúp <3 

31 tháng 8 2017

 (a+b+c)^3 - (a+b-c)^3 = (a+b+c -a-b+c)((a+b+c)^2 + (a+b-c)^2 + (a+b+c)(a+b-c)) 
= 2c((a+b+c - a-b+c)^2 + 3(a+b+c)(a+b-c)) = 2c(4c^2 + 3(a+b)^2 - 3c^2) = 2c(c^2 + 3(a+b)^2) 
(b+c-a)^3 + (c+a-b)^3 = (b+c-a+c+a-b)((b+c-a)^2 + (c+a-b)^2 - (b+c-a)(c+a-b)) 
= 2c((b+c-a+c+a-b)^2-3c^2 + 3(a-b)^2) = 2c(c^2 + 3(a-b)^2) 
=> (a+b+c)^3 - (a+b-c)^3 - (b+c-a)^3 - (c+a-b)^3 = 2c(c^2 + 3(a+b)^2) - 2c(c^2 + 3(a-b)^2) 
=2c(3(a+b)^2 -3(a-b)^2) = 6c((a+b)^2 - (a-b)^2) = 6c(2a.2b) = 24abc 
24abc chia hết cho 24 => (a+b+c)^3 - (a+b-c)^3 - (b+c-a)^3 - (c+a-b)^3 chia hết cho 24

P/s: Ko chắc đâu nha bn

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

9 tháng 8 2015

a) 

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[a^2+b^2+c^2-ab-bc-ca\right]\)

\(=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

b/

\(a+b+c=0\Rightarrow c=-\left(a+b\right)\Rightarrow c^2=\left(a+b\right)^2\)

\(\Leftrightarrow c^2=a^2+b^2+2ab\)\(\Leftrightarrow a^2+b^2+ab=c^2-ab\)

\(2x^4=\left(a^2+b^2+ab\right)^2+\left(c^2-ab\right)^2\)

\(=a^4+b^4+a^2b^2+2a^2b^2+2a^3b+2ab^3+c^4-2abc^2+a^2b^2\)

\(=a^4+b^4+c^4+\left(4a^2b^2+2a^3b+2ab^3-2abc^2\right)\)

\(=a^4+b^4+c^4+2ab\left(2ab+a^2+b^2-c^2\right)\)

\(=a^4+b^4+c^4+0\)

\(=a^4+b^4+c^4\)