Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M=a(b+c)+3b(c+a)+5c(a+b)=a(3-a)+3b(3-b)+5c(3-c)=\(\frac{81}{4}\)-\(\left(a-\frac{3}{2}\right)^2+3\left(b-\frac{3}{2}\right)^2+5\left(c-\frac{3}{2}\right)^2\)
Đặt x=\(\left|a-\frac{3}{2}\right|\),y=\(\left|b-\frac{3}{2}\right|\),z=\(\left|c-\frac{3}{2}\right|\)=>x+y+z\(\ge\left|a+b+c-\frac{9}{2}\right|=\frac{3}{2}\)
Khi đó M=\(\frac{81}{4}-\left(x^2+3y^2+5z^2\right)\)
Đưa thêm các tham số\(\alpha,\beta,\gamma>0\)Áp dụng bất đẳng thức AM-GM:\(x^2+\alpha^2\ge2x\alpha\)(1);\(3y^2+3\beta^2\ge6y\beta\)(2);\(5z^2+5\gamma^2\ge10z\gamma\)(3)
Suy ra: \(M-\alpha^2-3\beta^2-5\gamma^2\le\frac{81}{4}-2\left(x\alpha+3y\beta+5z\gamma\right)\)
Ta chọn \(\alpha=3\beta=5\gamma\)\(\Rightarrow M\le\frac{81}{4}+\alpha^2+3\beta^2+5\gamma^2-2\alpha\left(x+y+z\right)\)\(\le\frac{81}{4}+\alpha^2+3\beta^2+5\gamma^2-3a\)
Ta thấy dấu bằng các bất đẳng thức (1),(2),(3) xảy ra khi \(x=\alpha,y=\beta,z=\gamma\)\(\Rightarrow\alpha+\beta+\gamma=\alpha+\frac{\alpha}{3}+\frac{\alpha}{5}=x+y+z=\frac{3}{2}\)\(\Rightarrow\alpha=\frac{45}{46}\),\(\beta=\frac{15}{46},\gamma=\frac{9}{46}\)
Vậy MaxM=\(\le\frac{81}{4}+\left(\frac{45}{46}\right)^2+3\left(\frac{15}{46}\right)^2+5\left(\frac{9}{46}\right)^2-3.\frac{45}{46}\)=\(\frac{432}{23}\)
Cân bằng hệ số t vừa học:))
Từ đề bài có thể dự đoán a = c (do nó đối xứng nhau). Giả sử xảy ra cực trị tại a = c =x; b =y thì 2x + y = 3.
Ta có: \(a^3+2x^3\ge3x^2a\)
\(8b^3+16y^3\ge24y^2b\) (tách ra rồi cô si cho 3 số, mình tắt cho nhanh:v)
\(c^3+2x^3\ge3x^2c\)
Bây giờ cộng theo vế 3 bđt trên:
\(a^3+8b^3+c^3+4x^3+16y^3\ge3x^2\left(a+c\right)+24y^2b\)
Ta chọn x, y thỏa mãn \(3x^2=24y^2\left(\text{để xuất hiện giả thiết a+b+c=3}\right);2x+y=3\Leftrightarrow\hept{\begin{cases}x=\sqrt{8y^2}\\2\sqrt{8y^2}+y=3\left(2\right)\end{cases}}\)
(2) \(\Leftrightarrow\) \(y=\frac{3}{2\sqrt{8}+1}\) từ đây suy ra x. Có điểm rơi rồi đó, bạn từ làm ik, số xấu ngại làm lắm.
Ai tk sai nói rõ lý do giùm, chứ vầy ko hay đâu nha!:))