Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)
=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)
=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)
=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)
Thay a + b = 1 vào biểu thức trên ,có :
1.(12−3ab)+3ab(12−2ab)+6a2b2.11.(12−3ab)+3ab(12−2ab)+6a2b2.1
=1−3ab+3ab−6a2b2+6a2b2=1=1−3ab+3ab−6a2b2+6a2b2
=1
Vậy biểu thức M có giá trị bằng 1 khi a + b = 1
Ta có: a + b = 1
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)
= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2
= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2
= 1
nhwos tick nha :D
M=(a+b)(a2-ab+b2)+3ab(1-2ab)+6a2b2
M=a2-ab+b2+3ab
M=(a+b)2=1
Ta có: a + b = 1
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)
= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2
= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2
= 1
Theo đề bài ta có :
\(a+b+c=a^2+b^2+c^2\) ( * )
\(\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow ab+bc+ca=0\left(.\right)\)
Tiếp tục ta có :
\(a+b+c=a^3+b^3+c^3\)
\(\Leftrightarrow\left(a+b+c\right)^3=a^3+b^3+c^3\)
\(\Leftrightarrow a^3+\left[b^3+c^3+3bc\left(b+c\right)+3a\left(b+c\right)\left(a+b+c\right)\right]=a^3+b^3+c^3\)
\(\Leftrightarrow a^3+b^3+c^3+\left(b+c\right)\left(3bc+3a^2+3ab+3ac\right)=a^3+b^3+c^3\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(b+c\right)\left(a+b\right)\left(a+c\right)=a^3+b^3+c^3\)
\(\Leftrightarrow3\left(b+c\right)\left(a+b\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-c\\a=-b\\c=-a\end{matrix}\right.\)
Thay a = -b vào (1) ta được a = b = 0.
Thay vào ( *) ta được c = 1
Tương tự ta thấy trong ba số có 1 số là 1 và hai số còn lại có giá trị là 0.
\(\Leftrightarrow P=1.\)