K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2015

Áp dụng Côsi

\(S=\frac{3}{4}a+\frac{3}{a}+\frac{1}{2}b+\frac{9}{2b}+\frac{1}{4}c+\frac{4}{c}+\frac{1}{4}\left(a+2b+3c\right)\)

\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.20\)

\(=3+3+2+5=13\)

Dấu "=" xảy ra khi \(\frac{3a}{4}=\frac{3}{a};\text{ }\frac{b}{2}=\frac{9}{2b};\text{ }\frac{c}{4}=\frac{4}{c};\text{ }a+2b+3c=20\) hay \(a=2;\text{ }b=3;\text{ }c=4\)

a+4/a>=2*căn a*4/a=4

b+9/b>=2*căn b*9/b=6

c+16/c>=2*căn c*16/c=8

=>3a/4+b/2+c/4+3/a+9/2b+4/c>=3+3+2=8

a+2b+3c>=20

=>a/4+b/2+3c/4>=5

=>S>=13

Dấu = xảy ra khi a=2; b=3; c=4

4 tháng 9 2016

Ta có 
 M = (3a/4+3/a) + ( c/4+4/c) + (b/2+9/2b) + a/4 + b/2 + 3c/4 >= 3 + 2 + 3 +(a+2b+3c)/4 >= 13
Dấu bằng xảy ra khi a=2,b=3,c=4

29 tháng 10 2017

Áp dụng BĐT Cô-si

Ta có \(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)

\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)

\(\Rightarrow A\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}\left(a+2b+3c\right)\)

\(\Rightarrow A\ge13\)

Dấu bằng xảy ra khi\(a=2;b=3;c=4\)

Vậy\(MinA=13\Leftrightarrow\left(a;b;c\right)=\left(2;3;4\right)\)

31 tháng 12 2016

\(S=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)

\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\frac{1}{4}\left(a+2b+3c\right)\)

\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.20\)

\(\Rightarrow S\ge13\)

Đẳng thức xảy ra khi a = 2, b = 3, c = 4

Vậy minS = 13 tại (a,b,c) = (2,3,4)

31 tháng 12 2016

Ai giúp đi.