K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2020

Đặt BĐT cần c/m là A

Dự đoán đẳng thức xảy ra khi a = b = c

Áp dụng BĐT Cauchy cho 3 số không âm:

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)

\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}.\frac{a+b}{8}.\frac{a+c}{8}}=\frac{3a}{4}\)

\(\frac{b^3}{\left(b+c\right)\left(b+a\right)}+\frac{b+c}{8}+\frac{b+a}{8}\)

\(\ge3\sqrt[3]{\frac{b^3}{\left(b+c\right)\left(b+a\right)}.\frac{b+c}{8}.\frac{b+a}{8}}=\frac{3b}{4}\)

\(\frac{c^3}{\left(c+a\right)\left(c+b\right)}+\frac{c+a}{8}+\frac{c+b}{8}\)

\(\ge3\sqrt[3]{\frac{c^3}{\left(c+a\right)\left(c+b\right)}.\frac{c+a}{8}.\frac{c+b}{8}}=\frac{3c}{4}\)

Cộng từng vế của các BĐT trên, ta được:

\(A+\frac{2\left(a+b+c\right)}{4}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Rightarrow A\ge\frac{3}{4}\)

(Dấu "="\(\Leftrightarrow a=b=c\))