K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Trong phần câu hỏi tương tự có nhé cậu !

12 tháng 5 2018

\(a+b+c=0\Rightarrow a+b=-c;a+c=-b;b+c=-a\)

ta có:

\(Q=\frac{ab}{\left(a^2-c^2\right)+b^2}+\frac{bc}{\left(b^2-a^2\right)+c^2}+\frac{ac}{\left(c^2-b^2\right)+a^2}\)

    \(=\frac{ab}{\left(a-c\right)\left(a+c\right)+b^2}+\frac{bc}{\left(b-a\right)\left(b+a\right)+c^2}+\frac{ac}{\left(c-b\right)\left(c+b\right)+a^2}\)

\(=\frac{ab}{-b\left(a-c\right)+\left(-b\right)^2}+\frac{bc}{-c\left(b-a\right)+\left(-c\right)^2}+\frac{ac}{-a\left(c-b\right)+\left(-a\right)^2}\)

\(=\frac{ab}{-b\left(a-c-b\right)}+\frac{bc}{-c\left(b-a-c\right)}+\frac{ac}{-a\left(c-b-a\right)}\)

\(=\frac{ab}{-\left(a-\left(c+b\right)\right)}+\frac{bc}{-\left(b-\left(a+c\right)\right)}+\frac{ac}{-\left(c-\left(b+a\right)\right)}=\frac{ab}{-\left(a--a\right)}+\frac{bc}{-\left(b--b\right)}+\frac{ac}{-\left(c--c\right)}\)

\(=\frac{ab}{-2a}+\frac{bc}{-2b}+\frac{ac}{-2c}=\frac{b}{-2}+\frac{c}{-2}+\frac{a}{-2}=\frac{b+c+a}{-2}=\frac{0}{-2}=0\)

vậy Q=0