K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Do a+b+c=0=>b+c=-a ; a+c=-b ; a+b=-c

=>M=\(\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)

17 tháng 7 2015

a+b +c = 0 => a + b = -c ; a+ c = -b ; b+ c = - a thay vào ta có :

  \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=-\frac{c}{b}\cdot-\frac{a}{c}\cdot-\frac{b}{a}=-\frac{abc}{abc}=-1\)

Nhơ đúng nha

Ta có:

a+b-c/c = b+c-a/a = c+a-b/b

=>a+b-c/c + 2 = b+c-a/a +2 = c+a-b/b +2

=>a+b-c/c  + 2c/c =b+c-a/a +2a/a = c+a-b/b +2/b

=>a+b+c/c = a+b+c/a =a+b+c/b

* Nếu a+b+c=0 thì a= 0-b-c= -(b+c)

                           b= 0-a-c= -(a+c)

                           c= 0-b-a= -(b+a)

Thay a= -(b+c) ; b=-(a+c);c=-(b+a) vào B ta được

B=(1+b/a)(1+a/c)(1+c/b)=(a/a + b/a )(c/c +a/c)(b/b+c/b)=(a+b)/a * (a+c)/c * (c+b)/b

                                                                                =(-c)/a * (-b)/c * (-a)/b =-1

* Nếu  a+b+c\(\ne\)0 thì a=b=c

Khi đó

B=(1+b/a)(1+a/c)(1+c/b)=(1+1)(1+1)(1+1)=2*2*2=8

Vậy B=-1 hoặc B=8

nhớ k nha bạn

1 tháng 3 2018

B=1 hoặc B=8 nha!

18 tháng 8 2016

Ta có : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Leftrightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

TH1. Nếu a + b + c = 0 thì : \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)

TH2. Nếu \(a+b+c\ne0\) thì a = b = c

\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a.2a.2a}{a^3}=8\)

NV
6 tháng 5 2019

\(\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c}{c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\\\frac{a+b-c}{c}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b+c=2a\\a+c=2b\\a+b=2c\end{matrix}\right.\)

\(\Rightarrow Q=\frac{\left(a+b\right)}{b}.\frac{\left(b+c\right)}{c}.\frac{\left(a+c\right)}{c}=\frac{2c.2a.2b}{abc}=8\)

23 tháng 3 2018

mình làm được nhưng đánh lâu lắm

3 tháng 8 2019

Giả sử a< b < c thì a \(\ge\)2 , b \(\ge\)3 , c\(\ge\)5 . Ta có :

\(\frac{1}{\left[a,b\right]}=\frac{1}{ab}\le\frac{1}{6},\frac{1}{\left[c,a\right]}=\frac{1}{ca}\le\frac{1}{10}\)

=> vế trái nhỏ hơn hoặc bằng \(\frac{1}{6}+\frac{1}{15}+\frac{1}{10}=\frac{1}{3}\)

16 tháng 3 2019

\(\text{Vì }\left[a,b\right],\left[b,c\right],\left[c,a\right]\text{ là BCNN}\)

\(\Rightarrow\left[a,b\right]=a.b;\left[b,c\right]=b.c;\left[c,a\right]=c.a\)

\(\Rightarrow\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{\left[c+a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\text{Giả sử }a< b< c\)

\(\Rightarrow a\le2;b\le3;c\le5\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{3}\)

\(\text{hay }\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{c+a}\le\frac{1}{3}\left(đpcm\right)\)

17 tháng 3 2019

ể ==

\(2< 3\Rightarrow\frac{1}{2}>\frac{1}{3}\)

Cậu Bé Tiến Pro: e đổi dấu đi :))