K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

Ta chứng minh bổ đề:

Với x,y,z dương thì:

\(8\left(x+y+z\right)\left(xy+yz+zx\right)\le9\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Leftrightarrow x\left(y-z\right)^2+y\left(z-x\right)^2+z\left(x-y\right)^2\ge0\)(đúng)

Quay lại bài toán ta có:

\(A^{2020}=\left(\sqrt[2020]{\frac{a}{a+b}}+\sqrt[2020]{\frac{b}{b+c}}+\sqrt[2020]{\frac{c}{c+a}}\right)^{2020}\)

\(=\left(\sqrt[2020]{\frac{a\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}}+\sqrt[2020]{\frac{b\left(b+a\right)}{\left(b+c\right)\left(b+a\right)}}+\sqrt[2020]{\frac{c\left(c+b\right)}{\left(c+a\right)\left(c+b\right)}}\right)^{2020}\)

\(\le\left(1+1+1\right)^{2018}.2.\left(a+b+c\right).\left(\frac{a}{\left(a+b\right)\left(a+c\right)}+\frac{b}{\left(b+c\right)\left(b+a\right)}+\frac{c}{\left(c+a\right)\left(c+b\right)}\right)\)

\(=3^{2018}.\frac{4\left(a+b+c\right)\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\le3^{2018}.\frac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{3^{2020}}{2}\)

\(\Rightarrow A\le\frac{3}{\sqrt[2020]{2}}\)