K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{4z}{4z+57}\ge\frac{1}{1+x}+\frac{35}{35+2y}\ge2\sqrt{\frac{35}{\left(1+z\right)\left(35+2y\right)}}\)

\(\frac{x}{1+x}\ge\frac{57}{4z+57}+\frac{35}{35+2y}\ge2\sqrt{\frac{35\cdot57}{\left(4z+57\right)\left(35+2y\right)}}\)

\(\frac{2y}{35+2y}\ge\frac{57}{4z+57}+\frac{1}{1+x}\ge2\sqrt{\frac{57}{\left(4z+57\right)\left(1+x\right)}}\)

\(\Rightarrow8abc\ge8\cdot1995\Rightarrow abc\ge1995\)

Đẳng thức xảy ra khi \(x=2;y=35;z=\frac{57}{2}\)

31 tháng 5 2020

Theo BĐT Cauchy cho 2 số dương, ta có:

\(2x^2+y^2+5=\left(x^2+y^2\right)+\left(x^2+1\right)+4\ge2\left(xy+x+2\right)\)

\(\Rightarrow\frac{x}{2x^2+y^2+5}\le\frac{x}{2\left(xy+x+2\right)}\)(1)

Tương tự ta có: \(\frac{2y}{6y^2+z^2+6}\le\frac{2y}{4\left(yz+y+1\right)}=\frac{y}{2\left(yz+y+1\right)}\)(2)

\(\frac{4z}{3z^2+4x^2+16}\le\frac{4z}{4\left(zx+2z+2\right)}=\frac{z}{zx+2z+2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{x}{2x^2+y^2+5}+\frac{2y}{6y^2+z^2+6}+\frac{4z}{3z^2+4x^2+16}\)

\(\le\frac{1}{2}\left(\frac{x}{xy+x+2}+\frac{y}{yz+y+1}+\frac{2z}{zx+2z+2}\right)\)

\(=\frac{1}{2}\left(\frac{zx}{xyz+xz+2z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{2z}{zx+2z+2}\right)\)

\(=\frac{1}{2}\left(\frac{zx}{2+xz+2z}+\frac{2}{2z+2+xz}+\frac{2z}{zx+2z+2}\right)\)(Do xyz = 2)

\(=\frac{1}{2}.\frac{zx+2z+2}{zx+2z+2}=\frac{1}{2}\)

Đẳng thức xảy ra khi x = y = 1; z = 2

24 tháng 6 2016

\(\frac{4c}{4c+57}\ge\frac{1}{1+a}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(1+a\right)\left(35+2b\right)}}\)

\(\frac{a}{1+a}\ge\frac{57}{4c+57}+\frac{35}{35+2b}\ge2\sqrt{\frac{35\cdot57}{\left(4c+57\right)\left(35+2b\right)}}\)

\(\frac{2b}{35+2b}\ge\frac{57}{4c+57}+\frac{1}{1+a}\ge2\sqrt{\frac{57}{\left(4c+57\right)\left(1+a\right)}}\)

\(\Rightarrow8abc\ge8\cdot1995\Rightarrow abc\ge1995\)

Vậy giá trị nhỏ nhất của abc là 1995

25 tháng 6 2016

dấu '=' xảy ra khi nào zậy

13 tháng 9 2015

áp dụng bđt cô-si ta có\(x+y\ge2\sqrt{xy}\Rightarrow\frac{2xy}{x+y}\le\sqrt{xy}\)

cm tt ta có,,,,,,,\(P\le\sqrt{xy}+\sqrt{xz}+\sqrt{2yz}\)

đến đây tịt nhưng xem lại cái đề bài nha, cứ kiểu j đấy

10 tháng 9 2016

min P=6

25 tháng 5 2018

\(x^4y+x^2y-x^2y=x^2y\left(x^2+1\right)-x^2y.\)

\(\hept{\begin{cases}\frac{x^2y\left(x^2+1\right)-x^2y}{\left(x^2+1\right)}=x^2y-\frac{x^2y}{\left(x^2+1\right)}\\\frac{y^2z\left(y^2+1\right)-y^2z}{\left(y^2+1\right)}=y^2z-\frac{y^2z}{\left(y^2+1\right)}\\\frac{z^2x\left(z^2+1\right)-z^2x}{\left(z^2+1\right)}=z^2x-\frac{z^2x}{\left(z^2+1\right)}\end{cases}}Vt\ge x^2y+y^2z+z^2x-\left(\frac{x^2y}{x^2+1}+\frac{y^2z}{y^2+1}+\frac{z^2x}{z^2+1}\right)\)

\(\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\end{cases}\Leftrightarrow\hept{\begin{cases}-\frac{x^2y}{x^2+1}\ge\frac{x^2y}{2x}=\frac{xy}{2}\\\frac{y^2z}{2y}=\frac{yz}{2}\\\frac{z^2x}{2z}=\frac{xz}{2}\end{cases}\Leftrightarrow}VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)}\)

\(x^2y+y^2z+z^2x\ge3\sqrt[3]{x^3y^3z^3}=3\)

\(VT\ge3-\frac{\left(xy+yz+zx\right)}{2}\)

t chỉ làm dc đến đây thôi :))

27 tháng 5 2018

Từ \(VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)\)ta có:

\(x^2y+x^2y+y^2z=x^2y+x^2y+\frac{y}{x}\ge3xy\)(áp dụng BĐT Cauchy)

Tương tự : \(y^2z+y^2z+z^2x\ge3yz\);   \(z^2x+z^2x+x^2y\ge3zx\)

Cộng vế theo vế suy ra : \(3\left(x^2y+y^2z+z^2x\right)\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2y+y^2z+z^2x\ge xy+yz+zx\)

\(\Leftrightarrow VT\ge\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)

Dấu '=' xảy ra khi x = y = z = 1

28 tháng 12 2021

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\le\left(x+y+z\right)\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{9}{4}\)

\(\Leftrightarrow\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{z+x}\le\frac{y+z}{4x}+\frac{z+x}{4y}+\frac{x+y}{4z}\)

Ta có:

\(VP=\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}\right)\)

\(\ge\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=VT\)