Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
EZ, đề thanh hóa sáng nay ^^
Ta có: \(VT=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(\Rightarrow VT\ge\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)
\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7.3}{\left(a+b+c\right)^2}=30\)
Nhân cả 2 vế với a+b+c
Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0
dễ rồi nhé
b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)
=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)
=>Pmax=3/4 <=> x=y=z=1/3
Sử dụng bất đẳng thức \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với ba số \(a,b,c\) và ba số dương \(x,y,z\) bất kỳ với chú ý rằng \(a^2b^2c^2=1\), ta có:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{b^2c^2}{a\left(b+c\right)}+\frac{c^2a^2}{b\left(c+a\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\) \(\left(1\right)\)
Đặt \(x=ab;\) \(y=bc;\) và \(z=ca\) thì \(xyz=1\) \(\left(2\right)\) với \(x;\), \(y;\) và \(z\) \(>0\)
Khi đó áp dụng BĐT Cauchy cho bộ ba số nguyên dương \(x;\), \(y;\) và \(z\), ta được:
\(x+y+z\ge3\sqrt[3]{xyz}\) \(\Leftrightarrow\) \(x+y+z\ge3\) (do \(\left(2\right)\)), tức \(ab+bc+ca\ge3\) \(\left(3\right)\)
Từ \(\left(1\right);\) \(\left(3\right)\) ta suy ra \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\) \(\left(đpcm\right)\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=b=c=1\)
thông điệp nhỏ :
hãy tích nếu như ko muốn tích
ai tích mình tích lại nh nha
\(2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2\left(a^2+b^2+c^2\right)+4\frac{ab+bc+ca}{abc}.\)
\(=2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)\)(vì abc=1)
\(=2\left(a^2+b^2+c^2+2ab+2bc+2ac\right)\)
\(=2\left(a+b+c\right)^2\)
Ta có \(a+b+c\ge3\sqrt[3]{abc}=3\)(bất đẳng thức cô si cho ba số không âm)
Đặt \(a+b+c=x\ge3\)
Dễ thấy : \(2x^2-7x+3=\left(2x-1\right)\left(x-3\right)\ge0\)
Hay \(2\left(a+b+c\right)^2-7\left(a+b+c\right)+3\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge7\left(a+b+c\right)-3\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=3\end{cases}\Leftrightarrow}a=b=c=1\)
Đặt A = a + b + c .
Áp dụng BĐT Cosi cho 3 số thực dương ta có : \(A\ge3^3\sqrt{abc}=3\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-7\left(a+b+c\right)+3\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\cdot\frac{ab+bc+ca}{abc}-7\left(a+b+c\right)+3\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)-7\left(a+b+c\right)+3\)
\(\Leftrightarrow2\left(a+b+c\right)^2-7\left(a+b+c\right)+3\)
\(\Leftrightarrow2A^2-7A+3=\left(2A-1\right)\left(A-3\right)\ge0\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\)
DO:
\(\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ca}\ge9+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=9+21=30\)
\(\Rightarrow DPCM\)
Tích t vs ku