K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt  x = \(\frac{1}{2a+1},y=\frac{1}{2b+1},z=\frac{1}{2c+1}\)

Khi đó \(a=\frac{1-x}{2x},b=\frac{1-y}{2y},c=\frac{1-z}{2z}\)

Ta thấy 0 < x, y, z < 1 và x + y + z \(\ge1\)

Bất đẳng thức cần chứng minh trở thành :

\(\frac{x}{3-2x}+\frac{y}{3-2y}+\frac{z}{3-2z}\ge\frac{3}{7}\)

Áp dụng bất đẳng thức Bunhiacốpxki ta có :

\(\frac{x}{3-2x}+\frac{y}{3-2y}+\frac{z}{3-2z}\)

\(=\frac{x^2}{3x-2x^2}+\frac{y^2}{3y-2y^2}+\frac{z^2}{3z-2z^2}\)

\(\ge\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)-2\left(x^2+y^2+z^2\right)}\)

\(\ge\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)-\frac{2}{3}\left(x+y+z\right)^2}\)

\(=\frac{3}{\frac{9}{x+y+z}-2}\ge\frac{3}{7}\)

Cbht

28 tháng 1 2020

a,b,c > 0 nên 2a + b >0; 2b + c > 0; 2c + a > 0

Áp dụng BĐT Cauchy- schwarz:

\(VT=\text{Σ}_{cyc}\frac{1}{2a+b}\ge\frac{9}{3\left(a+b+c\right)}=\frac{3}{a+b+c}\)

Dấu "=" xảy ra khi a = b = c

26 tháng 4 2016

Đề sao rồi bạn ơi, phải là \(\le\) mới đúng. Bài này ta làm như sau:

Áp dụng BĐT Cauchy, ta có:

\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)

CMTT, ta được:

\(b^2+2c^2+3\ge2\left(bc+c+1\right)\)

\(c^2+2a^2+3\ge2\left(ca+a+1\right)\)

Do đó ta có:

\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\left(1\right)\)

Chú ý rằng \(abc=1\) nên ta dễ dàng CM được:

\(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) ta có đpcm.

26 tháng 4 2016

Nếu không cho abc=1; a,b,c >0 và BĐT >=1 thì mình xong lâu rồi. Khó phết 

13 tháng 5 2021

a)Áp dụng BĐT cosi-schwart:
`A=1/a+1/b+1/c>=9/(a+b+c)`
Mà `a+b+c<=3/2`
`=>A>=9:3/2=6`
Dấu "=" `<=>a=b=c=1/2`
b)Áp dụng BĐT cosi:
`a+1/(4a)>=1`
`b+1/(4b)>=1`
`c+1/(4c)>=1`
`=>a+b+c+1/(4a)+1/(4b)+1/(4c)>=3`
Ta có:
`1/a+1/b+1/c>=6`(Ở câu a)
`=>3/4(1/a+1/b+1/c)>=9/2`
`=>a+b+c+1/(a)+1/(b)+1/(c)>=3+9/2=15/2`
Dấu "=" `<=>a=b=c=1/2`

a)Áp dụng BĐT cosi-schwart:
A=1a+1b+1c≥9a+b+cA=1a+1b+1c≥9a+b+c
Mà a+b+c≤32a+b+c≤32
⇒A≥9:32=6⇒A≥9:32=6
Dấu "=" ⇔a=b=c=12⇔a=b=c=12
b)Áp dụng BĐT cosi:
a+14a≥1a+14a≥1
b+14b≥1b+14b≥1
c+14c≥1c+14c≥1
⇒a+b+c+14a+14b+14c≥3⇒a+b+c+14a+14b+14c≥3
Ta có:
1a+1b+1c≥61a+1b+1c≥6(Ở câu a)
⇒34(1a+1b+1c)≥92⇒34(1a+1b+1c)≥92
⇒a+b+c+1a+1b+1c≥3+92=152⇒a+b+c+1a+1b+1c≥3+92=152
Dấu "=" ⇔a=b=c=12

 

7 tháng 4 2019

Do a ; b ; c \(\ge1>0\) , áp dụng BĐT Cô - si cho 2 số , ta được :

\(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

=> BĐT được c/m

Áp dụng BĐT trên vào bài toán , ta có :

\(\frac{1}{2a-1}+1\ge\frac{4}{2a-1+1}=\frac{2}{a}\left(1\right)\)

Tương tự : \(\frac{1}{2b-1}+1\ge\frac{2}{b};\frac{1}{2c-1}+1\ge\frac{2}{c}\left(2\right)\)

Từ ( 1 ) ; ( 2 ) , ta có : \(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+3\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\left(3\right)\)

Tiếp tục áp dụng BĐT phụ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ( đã c/m ) , ta có :

\(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{a}+\frac{1}{c}\right)\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\left(4\right)\)

Từ ( 3 ) ; ( 4 ) \(\Rightarrow\) đpcm

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2a-1=1\\2b-1=1\\2c-1=1;a=b=c\end{matrix}\right.\)

\(\Leftrightarrow a=b=c=1\)

Vậy ...

18 tháng 3 2019

Áp dụng bđt Cauchy-Schwarz:

\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\ge\frac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{9}{4a+4b+4c}\)Dấu "=" xảy ra khi a=b=c

14 tháng 2 2020

Không có điều kiện gì nữa à? Chẳng hạn như a + b +c = 3;..