Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Cho \(x+y=a;x^2+y^2=b;x^3+y^3=c\)
Chứng minh: \(a^3-2ab+2c=0\)
Giải:
Ta có:
\(a^3-3ab+2c=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)
\(=x^3+y^3+3xy\left(x+y\right)-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)
\(=3\left(x^3+y^3\right)+3\left(x+y\right)\left(xy-x^2-y^2\right)=3\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(x+y\right)\left(xy-x^2-y^2\right)\)
\(=3\left(x+y\right)\left(x^2-xy+y^2+xy-x^2-y^2\right)=3\left(x+y\right).0\)
\(=0\) (đpcm)
\(a+b+c=0\)
=>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\)
=>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\)
=>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)
a) sau khi nhân vô + rút gọn ( câu này gg có á)
P = a3 + b3 + c3 - 3abc
b) a3 + b3 + c3 = 3abc?
a3 + b3 + c3 - 3abc = 0
theo câu b)
(a + b + c)(a2 + b2 + c2 - ab - bc - ca) =0
\(\Rightarrow\) a+b+c=0 hoặc
a2 + b2 + c2 - ab - bc -ca = 0
a2 - 2ab +b2 +b2 - 2bc + c2 + c2 - 2ac +a2 =0
(a-b)2 + (b-c)2 + (c-a)2 = 0
\(\Rightarrow\) a=b=c
hki Qqwwqe tại sao a2 - 2ab + b2 +b2 -2bc +c2+c2-2ac +a2=0
1,
\(a,7x-6x^2-2=-6x^2+7x-2=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)=\left(2x-1\right)\left(2-3x\right)\)
\(b,2x^2+3x-5=2x^2-2x+5x-5\)
\(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
\(c,16x-5x^2-3=-5x^2+x+15x-3\)
\(=-x\left(5x-1\right)+3\left(5x-1\right)=\left(5x-1\right)\left(3-x\right)\)
2,
\(a+b+c=0=>a+b=-c=>\left(a+b\right)^3=\left(-c\right)^3\)
\(=>a^3+b^3+3a^2b+3ab^2=-c^3\)
\(=>a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(=>a^3+b^3+c^3=-3ab\left(-c\right)=3abc\)(vì a+b=-c)
\(2x^2+3x-5\)
\(=2x^2-2x+5x-5\)
\(=2x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x-1\right)\left(2x+5\right)\)
\(a^3-3ab+2c\)
\(=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)
\(=x^3+3x^2y+3xy^2+y^3-3x^3-3x^2y-3xy^2-3y^3+2x^3+2y^3\)
\(=0\)
Ta có :
\(a+b+c\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)\(=a^3+3a^2b+3ab^2+b^3+c^3=0\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)\(=a^3+b^3+c^3=-3ab.-c\)
\(=a^3+b^3+c^3=3abc\Rightarrowđpcm\)
Ta cm \(a^3+b^3+c^3=3abc\) là đúng khi \(a+b+c=0\)
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\) \(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\) \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\) \(\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(\Leftrightarrow\) \(\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right)c-3ab\right]=0\)(điều này đúng vì a+b+c=0)
\(\Rightarrow\) \(a^3+b^3+c^3=3abc\)
2 bao gạo cân nặng 237 kg nếu gấp bao thứ nhất lên 3 lần gấp bao thứ 2 lên 2 lần thì được 611 hỏi mỗi bao gạo cân nặng bao nhiêu kg
bạn ơi chép đầu bài sai rồi
Giả sử a^3+b^3+c^3=3abc
<=> a^3+b^3+c^3-3abc=0
<=> (a+b)^3 -3ab(a+b) -3abc +c^3=0
<=>[(a+b)^3+c^3] -3ab(a+b+c) =0
<=> (a+b+c)[(a+b)^2-(a+b)c+c^3] -3ab(a+b+c)=0
<=> (a+b+c)[(a+b)^2-(a+b)c+c^3-3ab]=0
vì a+b+c =0 => đpcm