K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCAB vuông tại C có CH là đường cao ứng với cạnh huyền AB

nên \(CH^2=HB\cdot HA\)

hay CH=6(cm)

b: Ta có: ΔCAB vuông tại C 

nên ΔCAB nội tiếp đường tròn đường kính AB

hay \(C\in\left(O\right)\)

Xét ΔABD vuông tại B có BC là đường cao ứng với cạnh huyền AD

nên \(AB^2=AC\cdot AD\)

30 tháng 9 2021

a)
tam giác ABC vuông tại A có
AH2=BH.CH
92=4.CH
CH=81:4
CH=20,25

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

a: Xét ΔCOB có

CI là đường cao

CI là đường trung tuyến

Do đó: ΔCOB cân tại C

mà OC=OB

nên ΔCOB đều

=>\(\widehat{COB}=60^0=\widehat{CBA}\)

Xét ΔOCE vuông tại C có \(cosCOB=\dfrac{OC}{OE}\)

=>\(\dfrac{R}{OE}=\dfrac{1}{2}\)

=>OE=2R

b: 

ΔOCE vuông tại C

=>\(\widehat{COE}+\widehat{CEO}=90^0\)

=>\(\widehat{CEO}=90^0-60^0=30^0\)

ΔOCD cân tại O

mà OE là đường cao

nên OE là phân giác của góc COD

Xét ΔOCE và ΔODE có

OC=OD

\(\widehat{COE}=\widehat{DOE}\)

OE chung

Do đó: ΔOCE=ΔODE
=>\(\widehat{CEO}=\widehat{DEO}=30^0\)

=>\(\widehat{CED}=60^0\)

Xét ΔECD có

EI là đường cao

EI là trung tuyến

Do đó: ΔECD cân ạti E

=>EC=ED

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>\(\widehat{CAB}+\widehat{CBA}=90^0\)

=>\(\widehat{CAB}=90^0-60^0=30^0\)

Xét ΔCAE có \(\widehat{CAE}=\widehat{CEA}=30^0\)

nên ΔCAE cân tại C

ΔCAE cân tại C

mà CI là đường cao

nên I là trung điểm của AE

Xét tứ giác ACED có

I là trung điểm chung của AE và CD

nên ACED là hình bình hành

mà EC=ED

nên ACED là hình thoi

c: ΔOCE=ΔODE

=>\(\widehat{ODE}=\widehat{OCE}=90^0\)

=>ED là tiếp tuyến của (O)

 

a) Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm(gt)

CA là tiếp tuyến có A là tiếp điểm(gt)

Do đó: CM=CA(Tính chất hai tiếp tuyến cắt nhau)

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: DB=DM(Tính chất hai tiếp tuyến cắt nhau)

Ta có: CD=CM+DM(M nằm giữa C và D)

mà CM=CA(cmt)

và DM=DB(cmt)

nên CD=CA+DB