Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
tam giác ABC vuông tại A có
AH2=BH.CH
92=4.CH
CH=81:4
CH=20,25
a: Xét ΔCOB có
CI là đường cao
CI là đường trung tuyến
Do đó: ΔCOB cân tại C
mà OC=OB
nên ΔCOB đều
=>\(\widehat{COB}=60^0=\widehat{CBA}\)
Xét ΔOCE vuông tại C có \(cosCOB=\dfrac{OC}{OE}\)
=>\(\dfrac{R}{OE}=\dfrac{1}{2}\)
=>OE=2R
b:
ΔOCE vuông tại C
=>\(\widehat{COE}+\widehat{CEO}=90^0\)
=>\(\widehat{CEO}=90^0-60^0=30^0\)
ΔOCD cân tại O
mà OE là đường cao
nên OE là phân giác của góc COD
Xét ΔOCE và ΔODE có
OC=OD
\(\widehat{COE}=\widehat{DOE}\)
OE chung
Do đó: ΔOCE=ΔODE
=>\(\widehat{CEO}=\widehat{DEO}=30^0\)
=>\(\widehat{CED}=60^0\)
Xét ΔECD có
EI là đường cao
EI là trung tuyến
Do đó: ΔECD cân ạti E
=>EC=ED
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>\(\widehat{CAB}+\widehat{CBA}=90^0\)
=>\(\widehat{CAB}=90^0-60^0=30^0\)
Xét ΔCAE có \(\widehat{CAE}=\widehat{CEA}=30^0\)
nên ΔCAE cân tại C
ΔCAE cân tại C
mà CI là đường cao
nên I là trung điểm của AE
Xét tứ giác ACED có
I là trung điểm chung của AE và CD
nên ACED là hình bình hành
mà EC=ED
nên ACED là hình thoi
c: ΔOCE=ΔODE
=>\(\widehat{ODE}=\widehat{OCE}=90^0\)
=>ED là tiếp tuyến của (O)
a) Xét (O) có
CM là tiếp tuyến có M là tiếp điểm(gt)
CA là tiếp tuyến có A là tiếp điểm(gt)
Do đó: CM=CA(Tính chất hai tiếp tuyến cắt nhau)
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm(gt)
DB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: DB=DM(Tính chất hai tiếp tuyến cắt nhau)
Ta có: CD=CM+DM(M nằm giữa C và D)
mà CM=CA(cmt)
và DM=DB(cmt)
nên CD=CA+DB
a: Xét ΔCAB vuông tại C có CH là đường cao ứng với cạnh huyền AB
nên \(CH^2=HB\cdot HA\)
hay CH=6(cm)
b: Ta có: ΔCAB vuông tại C
nên ΔCAB nội tiếp đường tròn đường kính AB
hay \(C\in\left(O\right)\)
Xét ΔABD vuông tại B có BC là đường cao ứng với cạnh huyền AD
nên \(AB^2=AC\cdot AD\)