Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA∼ΔHAC
c: Ta có: ΔHBA∼ΔHAC
nên HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
ta có ΔABC vuông tại A
=>AB^2+AC^2=BC^2( định lí pytago)
=>BC^2=21^2+28^2
=1225
=>BC=35(cm)
+ có AD là đường phân giác
=>DC/DB=AC/AB
<=>DC+DB/DB=AC+AB/AB
<=>BC/DB=AC+AB/AB
<=>35/DB=21+28/21
=>35/DB=49/21
=>DB=35.21/49=15 cm
=>DC=BC-DB=35-15=20 cm
+ΔACH∞ΔBCA(g,g) vì
góc H=góc A=90 độ
góc C chung
=>AC/BC=CH/CA( hai cạnh tương ứng)
=>AC^2=CH.BC
=>CH=AC^2/BC=28^2/35=22,4 cm
ta có CH>CD(22,4>20)
=>D nằm giữa C và H
=>HD=CH-CD=22,4-20=2,4 cm
=>BH=BC-CH=35-22,4=12,6 cm
vậy BH=12,6cm
HD=2,4 cm
DC=20 cm
a: Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/4
BC=10cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó: BD=30/7(cm); CD=40/7(cm)
b: Xét ΔABC có DE//AC
nên DE/AC=BD/BC
=>DE/8=3/7
hay DE=24/7(cm)
a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)
a: BC=5
Xet ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=5/7
=>DB=15/7; DC=20/7
c: \(AD=\dfrac{2\cdot3\cdot4}{3+4}\cdot cos45=\dfrac{12}{7}\sqrt{2}\left(cm\right)\)
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
b: BC=căn 3^2+5^2=căn 34(cm)
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/5=căn 34/8
=>BD=3/8*căn34(cm)
c: \(AD=\dfrac{2\cdot5\cdot3}{5+3}\cdot cos45=\dfrac{15}{8}\cdot\sqrt{2}\left(cm\right)\)
bn bảo nên mk chỉ lamd AD thôi
tam giác ABC vuông tại A nên; BC=\(\sqrt{AB^2+AC^2=\sqrt{6^2}+8^2=10}\)cm
BD là phân giác góc ABC nên ta có:
\(\frac{AD}{CD}=\frac{AB}{BC}\Rightarrow\frac{AD}{AD+DC}=\frac{AB}{AB+BC}=\frac{AD}{AC}\)
\(\Rightarrow AD=\frac{AB.AC}{AB+BC}=\frac{6.8}{6.10}=3cm\)
hok tốt