Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
d) Ta có: \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow HDAE\) là hình chữ nhật
\(\Rightarrow DE=AH=\sqrt{BH.HC}=\sqrt{4.9}=6\left(cm\right)\)
Ta có: \(DM\parallel EN (\bot DE)\) và \(\angle MDE=\angle DEN=90\)
\(\Rightarrow MDEN\) là hình thang vuông
Vì \(\Delta BDH\) vuông tại D có M là trung điểm BH
\(\Rightarrow MD=\dfrac{1}{2}BH=\dfrac{1}{2}.4=2\left(cm\right)\)
Vì \(\Delta HEC\) vuông tại E có M là trung điểm CH
\(\Rightarrow EN=\dfrac{1}{2}CH=\dfrac{1}{2}.9=\dfrac{9}{2}\left(cm\right)\)
\(\Rightarrow S_{DENM}=\dfrac{1}{2}.\left(DM+EN\right).DE=\dfrac{1}{2}.\left(2+\dfrac{9}{2}\right).6=\dfrac{39}{2}\left(cm^2\right)\)
*Gọi G là giao điểm của AH và DE
Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)
Suy ra tam giác GHD cân tại G
Suy ra tam giác NCE cân tại N ⇒ NC = NE (16)
Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.
a]
Ta có: ADHE là hình chữ nhật => DE =AH
mà AH^2 = HB.HC = 36
=> DE=AH =9
b]
Do ADHE là h.c.n => ^ADE = ^AHE
mà ^AHE = ^ACH (góc có cạnh t/ư vuông góc)
=> ^ADE = ^ACB (*)
=> tg ADE ~ tg ABC (do * và có chung góc vuông)
=> AD/AE = AC/AB
=> AD.AB = AC.AE
c]
Ta có ^MDH = ^ADE (do cùng phụ ^HDE)
mà ^ADE = ^ACB = ^BHD (theo cm trên và DH//AC)
=> tg DMH cân => BM=DM=MH
c/m tương tự HN=NC = EN
ta có ADHE là hình chữ nhật (A=D=E=90)
=> hai đường chéo bằng nhau
=> DE=AH
mà theo hệ thức lượng trong tam giác vuông ta có A\(AH=\sqrt{BC.HC}=6\)
=> DE=6cm
b) theo hệ thức lượng trong tam giác ta có: \(AH^2=AD.AB\)
\(AH^2=AE.AC\)
=> AE.AC=AD.AB