Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
Xét tam giác ABE và tam giác MBE
có BA=BM(GT)
BE chung
AE=EM (GT)
suy ra tam giác ABE = tam giác MBE (c.c.c)
suy ra góc BEA=góc BEM , góc BAE=góc BME (1)
Mà góc BEA + góc BEM=180độ
suy ra góc BEA =góc BEM=90độ
Xét tam giác EAK và tam giác EMK
có AE=EM (GT)
góc KEA=góc KEM = 90 độ
cạnh EK chung
suy ra tam giác EAK = tam giác EMK (cg.c)
suy ra góc KME=góc KAE (2)
Từ (1) và (2) suy ra góc KME +góc EMB=góc KAE+ góc EAB
suy ra góc KMB=góc KAB = 90 độ
suy ra KM vuông góc với BC
c) sai đề nhé
a) Xét ΔABE và ΔMBE có:
BE chung
AB = MB (gt)
AE = EM (E là trung điểm của AM)
Suy ra ΔABE = ΔMBE (ccc)
b) Xét Δ ABK và Δ MBK có:
AB = BM (gt)
góc ABK = góc MBK (ΔABE = ΔMBE)
BK chung
Suy ra ΔABK = ΔMBK (cgc)
Suy ra góc BAK = góc BMK
Mà góc BAK = 90 độ ( ΔABC vuông tại A)
Suy ra góc BMK = 90 độ
Suy ra KM ⊥ BC (đng)
a: Xét ΔABE và ΔMBE co
BA=BM
EA=EM
BE chung
=>ΔABE=ΔMBE
b: Xet ΔBAK và ΔBMK có
BA=BM
góc ABK=góc MBK
BK chung
=>ΔBAK=ΔBMK
=>góc BMK=90 độ
=>KM vuông góc BC
c: Xét tứ giác MFKQ có
MF//KQ
MF=KQ
=>MFKQ là hình bình hành
=>MQ//KF
=>góc CMQ=góc CBK=góc ABK
a: Ta có: ΔAMB cân tại A
mà AE là đường trung tuyến
nên AE là đường phân giác
b: Ta có: ΔAMB cân tại A
mà AE là đường trung tuyến
nên AE là đường cao
a) Xét △ABE và △MBE:
BA=BM(gt)
BE: Cạnh chung
AE=ME (gt)
=> △ABE=△MBE (c.c.c)
b) Xét △ABK và △MBK:
BK:Cạnh chung
BA=BM(gt)
Góc ABK=góc MBK (△ABE=△MBE)
=> △ABK=△MBK (c.g.c)
=> Góc BAK=góc BMK=90o
=> KM vuông góc với BC