K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2023

a)

Xét ΔHBA vàΔABC,có:

∠AHB=∠CAB(=90)

∠ABC:chung

⇒ΔHBA ~ΔABC(g-g)

✳Xét ΔHAC vàΔABC,có:

∠CHA=∠CAB(=90)

∠ACB:chung

⇒ΔHAC ~ΔABC(g-g)

a: Xét ΔHBA vuôngtại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng vơi ΔABC

Xét ΔHAC vuôngtại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng với ΔABC

b: ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC=HA/AC

=>BA^2=BH*BC và BA*AC=AH*CB

Xet ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

HB=3^2/5=1,8cm

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=15^2-12^2=81\)

hay BH=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay CH=16(cm)

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

AH=15*20/25=12(cm)

c: ΔAHB vuông tại H có HM vuông góc AB

nên AM*AB=AH^2

ΔAHC vuông tại H có HN vuông góc AC

nên AN*AC=AH^2=AM*AB

31 tháng 3 2022

Bài 2 :

undefined

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: BC=25cm

AH=15*20/25=12cm

HB=20^2/25=16cm

HC=25-16=9cm

22 tháng 4 2021

undefined

1 tháng 4 2016

M, N ở đâu?

1 tháng 4 2016

Mình​ đã sửa lại đề, mong mấy bạn qan tâm giải hộ mình