Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với $ab+bc+ac=1$ thì:
$a^2+1=a^2+ab+bc+ac=(a+b)(a+c)$
$b^2+1=b^2+ab+bc+ac=(b+a)(b+c)$
$c^2+1=c^2+ab+bc+ac=(c+a)(c+b)$
$\Rightarrow A=(a^2+1)(b^2+1)(c^2+1)=(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)=[(a+b)(b+c)(c+a)]^2$ là scp
Ta có đpcm.
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
cho các số nguyên a,b,c,d thỏa mãn a+b+c+d=0
chứng minh rằng (ab-cd)(bc-ad)(ac-bd) là số chính phương
Vì a+b+c+d=0\(\Rightarrow a+b+c=-d\Rightarrow ac+bc+c^2=-cd\)
\(\Rightarrow\)\(ab-cd=ab+ac+bc+c^2=\left(a+c\right)\left(b+c\right)\)
Tương tự ta có \(bc-ad=\left(a+b\right)\left(a+c\right)\)
\(ac-bd=\left(a+b\right)\left(b+c\right)\)
Từ 3 điều trên ta suy ra đpcm
Gợi ý cách giải: Thế a = 1 - b - c vào P sau đó phân tích số chính phương là ra
Có : a^2+1 = a^2+ab+bc+ca = (a^2+ab)+(bc+ca) = (a+b).(a+c)
Tương tự : b^2+1 = (b+c).(b+a)
c^2+1 = (c+a).(c+b)
=> (a^2+1).(b^2+1).(c^2+1) = [(a+b).(b+c).(c+a)]^2 là 1 số chính phương
=> ĐPCM
k mk nha
\(A=a^5-a=a.\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)=B\left(a^2+1\right)\)B là 3 số tự nhiên liên tiếp \(\left\{{}\begin{matrix}B⋮2\\B⋮3\\B⋮6\end{matrix}\right.\) ta cần c/m A chia cho 5
\(A=B\left(n^2+1\right)=B\left[\left(n^2-4\right)+5\right]=B\left(n^2-2^2\right)=B\left(n-2\right)\left(n+2\right)+5B=C+5B\)C là tích 5 số tự nhiên liên tiếp: \(\left\{{}\begin{matrix}C⋮5\\5B⋮5\end{matrix}\right.\)\(\Rightarrow A⋮5\)
\(\left\{{}\begin{matrix}A⋮5\\A⋮6\end{matrix}\right.\)\(\Rightarrow A⋮30\) => dpcm