K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 9 2018

Lời giải:

Áp dụng BĐT Cô-si cho các số dương ta có:

\(\frac{a}{bc}+\frac{b}{ac}\geq 2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=2\sqrt{\frac{1}{c^2}}=\frac{2}{c}\)

\(\frac{b}{ac}+\frac{c}{ab}\geq 2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=2\sqrt{\frac{1}{a^2}}=\frac{2}{a}\)

\(\frac{a}{bc}+\frac{c}{ab}\ge 2\sqrt{\frac{a}{bc}.\frac{c}{ab}}=2\sqrt{\frac{1}{b^2}}=\frac{2}{b}\)

Cộng các BĐT trên theo vế và rút gọn

\(\Rightarrow \frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
7 tháng 9 2018

Lời giải:

Áp dụng BĐT Cô-si cho các số dương ta có:

\(\frac{ab}{c}+\frac{bc}{a}\geq 2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{bc}{a}+\frac{ca}{b}\geq 2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2c\)

\(\frac{ab}{c}+\frac{ca}{b}\geq 2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)

Cộng theo vế và rút gọn

\(\Rightarrow \frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\geq a+b+c\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

\(\dfrac{a}{bc}+\dfrac{b}{ac}>=2\cdot\sqrt{\dfrac{a}{bc}\cdot\dfrac{b}{ac}}=\dfrac{2}{cc}\)

\(\dfrac{b}{ca}+\dfrac{c}{ab}>=2\cdot\sqrt{\dfrac{bc}{ca\cdot ab}}=\dfrac{2}{a}\)

\(\dfrac{c}{ab}+\dfrac{a}{bc}>=2\cdot\sqrt{\dfrac{a\cdot c}{a\cdot b\cdot c\cdot b}}=\dfrac{2}{b}\)

=>a/bc+b/ac+c/ab>=2(1/a+1/b+1/c)

18 tháng 4 2023

sao ra đc thế bn, đề bị sai mà

24 tháng 6 2017

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)

\(\Leftrightarrow\dfrac{a+b}{a}\times\dfrac{b+c}{b}\times\dfrac{a+c}{c}=8\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\)

~*~*~*~*~

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}\)

\(=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\) (1)

\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{b}{b+c}-\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{c}{c+a}-\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a}{a+b}\left(1-\dfrac{b}{b+c}\right)+\dfrac{b}{b+c}\left(1-\dfrac{c}{c+a}\right)+\dfrac{c}{a+c}\left(1-\dfrac{a}{a+b}\right)\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a}{a+b}\times\dfrac{c}{b+c}+\dfrac{b}{b+c}\times\dfrac{a}{a+c}+\dfrac{c}{a+c}\times\dfrac{b}{a+b}\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}=\dfrac{3}{4}\)

\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)=\dfrac{3}{4}\times8abc\)

\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)+2abc=8abc\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\) luôn đúng

=> (1) đúng

24 tháng 6 2017

Bạn cũng có thể giải bằng cách đặt \(x=\dfrac{a}{a+b};y=\dfrac{b}{b+c};z=\dfrac{c}{a+c}\).

26 tháng 1 2022

nhân cả vế với abc ta có điều cần chứng minh

\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)

=>(đpcm)

mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\) 

chỉ cần chứng minh được \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé

 

 

26 tháng 1 2022