Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có:a+b-c /c= a-b+c / b = -a+b+c / a = a+b-c+a-b+c -a+b+c / c+b+a = a+b+c / c+b+a=1
=> a+b-c/ c =1 => a+b-c = c => a+b = c+c=2c
a-b+c/ b =1 => a-b+c= b => a+c = b+b= 2b
-a+b+c / a =1 => -a+b+c = a => b+c =a+a=2a
có M= ( a+b)(b+c)(c+a) / abc
= 2c . 2a . 2b / abc
= 8abc/abc
=8
vậy M=8
= 2c . 2a.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
\(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{a+b+c}{a+b+c}\)(1)
+) Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
Thay vào biểu thức M ta được: \(M=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)
+) Nếu \(a+b+c\ne0\)
\(\Rightarrow\)Giá trị của (1) \(=1\)\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2c\\c+a=2b\\b+c=2a\end{cases}}\)
Thay vào biểu thức M ta được: \(M=\frac{2c.2b.2a}{abc}=\frac{8abc}{abc}=8\)
Vậy \(M=-1\)hoặc \(M=8\)
Áp dụng tính chất dãy tủ số bằng nhau, ta có:
\(\frac{a+b-c}{c}\) = \(\frac{a-b+c}{b}\) = \(\frac{-a+b+c}{a}\) = \(\frac{a+b+c}{a+b+c}\) = 1
=>\(\frac{a+b-c}{c}\) = 1
a+b-c = c
a+b =2c
=>\(\frac{a-b+c}{b}\) = 1
a-b+c = c
a+c =2b
=>\(\frac{-a+b+c}{a}\) = 1
-a+b+c = a
b+c =2a
Thay a+b =2c , a+c =2b , b+c =2a vào biểu thức:
M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\) = \(\frac{2c.2b.2a}{abc}\) = \(\frac{2^3abc}{abc}\) = 23 =8