Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài ra, ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
áp dụng tính chất ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c+-a+b+c}{c+b+a}=\frac{a+b+c}{c+b+a}=1\)
=> a + b - c = c => a + b = 2c (1)
=> a - b +c = b => a+c = 2b (2)
=> -a +b +c = a => b + c = 2a (3)
thay 1, 2 và 3 vào biểu thức M ta có:
\(M=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)
vậy M = 8
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{c+b+a}\)
\(=\frac{a+b+c}{a+b+c}\left(1\right)\)
Xét 2 trường hợp:
- TH1: a + b + c = 0 \(\Rightarrow\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\)
Ta có: \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{-c.\left(-a\right).\left(-b\right)}{abc}=-1\)
- TH2: \(a+b+c\ne0\)
Từ (1) => \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=1\)
\(\Rightarrow\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}\)\(\Rightarrow\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}\)
Ta có: \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2b.2a}{abc}=8\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
\(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{a+b+c}{a+b+c}\)(1)
+) Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
Thay vào biểu thức M ta được: \(M=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)
+) Nếu \(a+b+c\ne0\)
\(\Rightarrow\)Giá trị của (1) \(=1\)\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2c\\c+a=2b\\b+c=2a\end{cases}}\)
Thay vào biểu thức M ta được: \(M=\frac{2c.2b.2a}{abc}=\frac{8abc}{abc}=8\)
Vậy \(M=-1\)hoặc \(M=8\)
Áp dụng tính chất dãy tủ số bằng nhau, ta có:
\(\frac{a+b-c}{c}\) = \(\frac{a-b+c}{b}\) = \(\frac{-a+b+c}{a}\) = \(\frac{a+b+c}{a+b+c}\) = 1
=>\(\frac{a+b-c}{c}\) = 1
a+b-c = c
a+b =2c
=>\(\frac{a-b+c}{b}\) = 1
a-b+c = c
a+c =2b
=>\(\frac{-a+b+c}{a}\) = 1
-a+b+c = a
b+c =2a
Thay a+b =2c , a+c =2b , b+c =2a vào biểu thức:
M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\) = \(\frac{2c.2b.2a}{abc}\) = \(\frac{2^3abc}{abc}\) = 23 =8
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+a-a+b-b+b-c+c+c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\) (Tính chất dãy các tỉ số bằng nhau) Do đó:
\(\frac{a+b-c}{c}=1\Rightarrow\frac{a+b}{c}-1=1\Rightarrow\frac{a+b}{c}=2\)
\(\frac{a-b+c}{b}=1\Rightarrow\frac{a+c}{b}-1=1\Rightarrow\frac{a+c}{b}=2\)
\(\frac{-a+b+c}{a}=1\Rightarrow\frac{b+c}{a}-1=1\Rightarrow\frac{b+c}{a}=2\)
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{a+c}{b}=2.2.2=8\)
sao ko aj trả lời za