Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^3}{b}+ab+\dfrac{b^3}{c}+bc+\dfrac{c^3}{a}+ca\ge2\sqrt{\dfrac{a^4b}{b}}+2\sqrt{\dfrac{b^4c}{c}}+2\sqrt{\dfrac{c^4a}{a}}=2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
áp dụng AM GM ta có a^3/b+ab>=2a^2
chứng minh tương tự => a^3/b+b^3/c+c^3/a>=2(a^2+b^2+c^2)-(ab+bc+ca)
mà ta có a^2+b^2+c^2>=(ab+bc+ca)
=>a^3/b+b^3/c+c^3/a>= ab+bc+ca
"=" xảy ra khi a=b=c
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+c^3=\dfrac{3}{abc}\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3+\dfrac{1}{c^3}-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{3}{abc}=0\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2-\dfrac{1}{c}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{1}{c^2}\right)-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{1}{ab}-\dfrac{1}{bc}-\dfrac{1}{ca}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b=c\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\end{matrix}\right.\)
Đề bài thiếu, cần thêm dữ liệu "a;b;c phân biệt"
Khi đó \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
\(A=\left(a+b+c\right)^3-\left(b+c-a\right)^3-\left(c+a-b\right)^3-\left(a+b-c\right)^3\)
Đặt \(x=b+c-a,y=c+a-b,z=a+b-c\).
Khi đó \(x+y+z=a+b+c\).
\(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left(y+z\right)\left[\left(x+y+z\right)^2+x\left(x+y+z\right)+x^2\right]-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right)\left(3x^2+3xy+3zx+3yz\right)\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(=24abc=24\)
Đặt \(\hept{\begin{cases}a+b-c=x\\b+c-a=y\\c+a-b=n\end{cases}}\)
\(\Rightarrow x+y+n=a+b+c\)
\(\Rightarrow x+y+2b\)
\(\Rightarrow y+n=2c\)
\(\Rightarrow n+x=2a\)
Ta có:
\(A=\left(x+y+n\right)^3-y^3-n^3-x^3\)
\(=x^3+y^3+n^3+3\left(x+y\right)\left(y+n\right)\left(n+x\right)-y^3-n^3-x^3\)
\(=3\left(x+y\right)\left(y+n\right)\left(n+z\right)\)
\(=3.2b.2c.2a=24abc\)
\(\Rightarrow A=24\) (Vì đề ra \(abc=1\))
#)Giải :
Ta có : \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(\left(a+b\right)+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b+c\right)^2-3\left(a+b\right)c-3ab\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
3abc phải không
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+c^3-3abc-3a^2b-3ab^2=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ca-cb+c^2-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrowđpcm\)