K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-5\right)^2+12=0\)

Khi \(a=1;b=2;c=5\)

Good luck :3

19 tháng 6 2017

ta có : \(a^2+b^2+c^2+42=2a+8b+10c\)

\(\Leftrightarrow\) \(a^2+b^2+c^2+42-2a-8b-10c=0\)

\(\Leftrightarrow\) \(\left(a^2-2a+1\right)+\left(b^2-8b+16\right)+\left(c^2-10c+25\right)=0\)

\(\Leftrightarrow\) \(\left(a-1\right)^2+\left(b-4\right)^2+\left(c-5\right)^2=0\)

\(\left\{{}\begin{matrix}\left(a-1\right)^2\ge0\forall a\\\left(b-4\right)^2\ge0\forall b\\\left(c-5\right)^2\ge0\forall c\end{matrix}\right.\)

\(\Rightarrow\) \(\left(a-1\right)^2+\left(b-4\right)^2+\left(c-5\right)^2=0\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-4\right)^2=0\\\left(c-5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a-1=0\\b-4=0\\c-5=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=1\\b=4\\c=5\end{matrix}\right.\)

khi đó \(a+b+c=1+4+5=10\)

19 tháng 6 2017

o có gì hihi

4 tháng 10 2016

a+ b2 + c2 + 42=2a +8b +10c

\(\Rightarrow a^2+b^2+c^2+42-2a-8b-10c=0\)

\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-8b+16\right)+\left(c^2-10c+25\right)=0\)

\(\Rightarrow\left(a-1\right)^2+\left(b-4\right)^2+\left(c-5\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a-1=0\\b-4=0\\c-5=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=4\\c=5\end{cases}}\)

Khi đó \(a+b+c=1+4+5=10\)

18 tháng 10 2016

cho x<0 thỏa mãn  \(\frac{1}{x^2+9x+20}\)+\(\frac{1}{x^2+11x+30}\)+\(\frac{1}{x^2+13x+42}\)=\(\frac{1}{18}\)  tìm  x=?

mn giải giúp mk với

8 tháng 10 2017

Không ghi lại đề

\(a^2-2a+1+b^2-8b+16+c^2-10c+25=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-4\right)^2+\left(c-5\right)^2=0\)

Suy ra: \(\left\{{}\begin{matrix}a=1\\b=4\\c=5\end{matrix}\right.\)

Vậy: \(a+b+c=1+4+5=10\)

25 tháng 8 2017

Ta có BĐT \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)

Nên BĐT cần chứng minh là 

\(\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge\frac{3}{2}\)

Đặt \(\hept{\begin{cases}a^2=x\\b^2=y\\c^2=z\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+y+z=3\\x,y,z>0\end{cases}}\)

Áp dụng BĐT AM-GM and Cauchy-Schwarz ta có:

\(Σ\frac{a^2}{a+b^2}=Σ\frac{x}{\sqrt{x}+y}=Σ\frac{x}{\sqrt{\frac{x\left(x+y+z\right)}{3}+y}}\)

\(=Σ\frac{6x}{2\sqrt{3x\left(x+y+z\right)}+6y}\geΣ\frac{6x}{3x+x+y+z+6y}=Σ\frac{6x}{4x+7y+z}\)

\(=Σ\frac{6x^2}{4x^2+7xy+xz}\ge\frac{6\left(x+y+z\right)^2}{Σ\left(4x^2+7xy+xz\right)}=\frac{3}{2}\)

-Nguồn : Xem câu hỏi

26 tháng 4 2020

BĐT cần  chứng minh tương đương với :

\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)

\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Áp dụng BĐT Cô-si cho 3 số dương ,ta có :

\(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)

tương tự :  \(b^2c+bc^2+\frac{1}{bc^2}\ge3b\)\(\left(c^2a+ca^2+\frac{1}{ca^2}\right)\ge3c\)

Cộng 3 BĐT trên theo vế, ta được :

\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge3\left(a+b+c\right)=9\)

Dấu "=" xảy ra khi a = b = c = 1

19 tháng 7 2016

bài này mình nghĩ chỉ có thể áp dụng bdt shur la ra .

19 tháng 6 2023

a) Có:

 \(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)

19 tháng 6 2023

câu (b) cho đa thức P (x) = cái gì?