Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
Do đó;ΔABE đồng dạng với ΔACF
Suy ra: AB/AC=AE/AF
hay \(AF\cdot AB=AE\cdot AC\)
b: Xét ΔFHB vuông tại F và ΔFAC vuông tại F có
\(\widehat{FBH}=\widehat{FCA}\)
Do đó;ΔFHB\(\sim\)ΔFCA
Suy ra: FH/FC=FB/FA
hay \(FH\cdot FA=FB\cdot FC\)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
Do đó;ΔABE\(\sim\)ΔACF
SUy ra: AB/AC=AE/AF
hay \(AB\cdot AF=AC\cdot AE\)
b: Xét ΔFHB vuông tại F và ΔFAC vuông tại F có
\(\widehat{FBH}=\widehat{FCA}\)
DO đó;ΔFHB\(\sim\)FAC
Suy ra: FH/FA=FB/FC
hay \(FH\cdot FC=FA\cdot FB\)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
Do đó: ΔABE đồng dạng với ΔACF
SUy ra: AB/AC=AE/AF
hay \(AB\cdot AF=AE\cdot AC\)
b: Xét ΔFHB vuông tại F và ΔFAC vuông tại F có
\(\widehat{FBH}=\widehat{FCA}\)
Do đó:ΔFHB\(\sim\)ΔFAC
Suy ra: FH/FA=FB/FC
hay \(FH\cdot FC=FA\cdot FB\)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
DO đó: ΔABE\(\sim\)ΔACF
b: Ta có: ΔABE\(\sim\)ΔACF
nên AB/AC=AE/AF
hay \(AB\cdot AF=AC\cdot AE\)
c: Xét ΔFHB vuông tại F và ΔFAC vuông tại F có
\(\widehat{FBH}=\widehat{FCA}\)
Do đó: ΔFHB\(\sim\)ΔFAC
Suy ra: FH/FA=FB/FC
hay \(FH\cdot FC=FA\cdot FB\)
Mình bổ sung câu c nha
Xét tứ giác HBDC có
BH // DC (GT)
HC // BD (GT)
\(\Rightarrow\) HBDC là hình bình hành
Mà I là trung điểm của BC
\(\Rightarrow\) I là trung điểm của HD
\(\Rightarrow\) 3 điểm H,I,D thẳng hàng
a, Xét \(\Delta ABEv\text{à}\Delta ACF\)
\(AEB=\text{AF}C\left(=90^o\right)\)
\(BAE=FAC\) (góc chung)
\(\Rightarrow\Delta ABE~\Delta ACF\left(g.g\right)\)
b,Từ \(\Delta ABE~\Delta ACF\) (chứng minh trên)
\(\Rightarrow\frac{AB}{AC}=\frac{AE}{\text{AF}}\Rightarrow\frac{\text{AF}}{AC}=\frac{AE}{AB}\)
Xét \(\Delta AEFva\Delta ABC\)
\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)
\(EAF=BAC\) (Góc chung)
\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\frac{AE}{AB}=\frac{\text{EF}}{BC}\Rightarrow AE.BC=AB.\text{EF}\)
<Tự vẽ hình nha>
a)Xét ΔABE và ΔACF
góc AEB=góc AFC
góc BEA=góc CFA
Vậy ΔABE ∼ ΔACF(g.g)
⇒\(\dfrac{AB}{AC}\)=\(\dfrac{AE}{AF}\)⇔AB.AF=AE.AC
⇒\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)
b)Xét ΔAEF và ΔABC
Góc A:chung
\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)(cmt)
Vậy ΔAEF∼ΔABC (g.g)
a: Xét ΔABE và ΔACF có
góc AEB=góc AFC
góc A chung
=>ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
=>FE/BC=AE/AB
=>FE*AB=AE*BC